Logs and Indices 21 October 2012

How long will it take for a sum of money to double if invested at 20% compound interest, compounded annually?"

Logs and Indices 21 October 2012

	exponenti
X	2× 3
0	1
1	2
2 3 4 5 6	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096
Loos	

Use the table to Solve

128 x 64

John Napier

What power do I put on 2 to give output 512

LOC → Process of going
from output to
in put in an
exponential function

LOGARITHMS

The logarithm of a number is the power that the base has to be raised to produce that number.

eg. $\log 39 = ?$ " WHAT IS LOG 9 TO THE BASE 3?"

This means if $3^{\circ} = 9$ what is the value g n ?POIDER-INDEX-EXPONENT

We know that $3^{\circ} = 9$ So $\log_3 9 = 2$

WHAT IS :

REMEMBER THIS JUNIOR CERT. RUESTION

$$\sqrt{\frac{125 \times 5^2}{(5^3)^2}} = 5^n \qquad n=?$$

We could use the log a "fanction on the calculation to solve this type of guestion.

$$\Rightarrow \log_{5}\left(\frac{\sqrt{125}\times5^{2}}{(5^{3})^{2}}\right) = -5/2 \Rightarrow n = -5/2 \quad (TRY THIS!)$$

LOGARITHMIC ALGEBRA

2
$$\log \frac{9}{6}$$
 = $\log a$ - $\log b$

$$\bigcirc$$
 $a^{n+m} = a^n \cdot a^m$

Logs and Indices 21 October 2012

$$log_a a = 1$$
 (because $a' = a$)

 $ln e = log_e e = 1$
 $log_b 10 = log_{00} 10 = 1$

$$log_b a = \frac{log a}{log b}$$

eg... what is
$$\log_4 25 = \frac{\log 25}{\log 4} =$$

CHANGE AN EXPONENTIAL EQUATION INTO A LOGARITHMIC EQUATION

$$b^n = a \Rightarrow log_b a = n$$

$$eg., 4^3 = 64$$