Question 4

In a science experiment, a quantity $Q(t)$ was observed at various points in time t. Time is measured in seconds from the instant of the first observation. The table below gives the results.

t	0	1	2	3	4
$Q(t)$	2.920	2.642	2.391	2.163	1.957

Q follows a rule of the form $Q(t)=A e^{-b t}$, where A and b are constants.
(a) Use any two of the observations from the table to find the value of A and the value of b, correct to three decimal places.

$$
\begin{aligned}
Q(0) & =A e^{0}=2 \cdot 92 \\
\therefore A & =2 \cdot 920 \\
Q(t) & =2.92 e^{-b t} \\
Q(1) & =2.92 e^{-b}=2.642 \\
e^{-b} & =\frac{2.642}{2.92} \\
-b & =\log _{e} \frac{2.642}{2.92} \\
b & =0.100
\end{aligned}
$$

(b) Use a different observation from the table to verify your values for A and b.

$$
\begin{aligned}
& Q(t)=2.92 e^{-0.1 t} \\
& Q(2)=2.92 e^{-0.2}=2.391
\end{aligned}
$$

From the table, $Q(2)=2 \cdot 391$, thus verifying the values for A and b.
(c) Show that $Q(t)$ is a constant multiple of $Q(t-1)$, for $t \geq 1$.

$$
\begin{aligned}
\frac{Q(t)}{Q(t-1)} & =\frac{A e^{-b t}}{A e^{-b(t-1)}} \\
& =e^{-b} \quad(\text { a constant })
\end{aligned}
$$

Or

$$
\frac{Q(t-1)}{Q(t)}=e^{b}
$$

$$
\begin{aligned}
Q(t) & =2 \cdot 92 e^{-0.1 t} \\
Q(t-1) & =2 \cdot 92 e^{-0.1(t-1)} \\
\frac{Q(t)}{Q(t-1)} & =\frac{2 \cdot 92 e^{-0.1 t}}{2 \cdot 92 e^{-0.1(t-1)}}=\frac{1}{e^{0.1}}
\end{aligned}
$$

(d) Find the value of the constant k for which $Q(t+k)=\frac{1}{2} Q(t)$, for all $t \geq 0$.

Give your answer correct to two decimal places.

$$
\begin{aligned}
Q(t+k) & =\frac{1}{2} Q(t) \\
A e^{-b(t+k)} & =\frac{1}{2} A e^{-b t} \\
2 e^{-b(t+k)} & =e^{-b t} \\
2 e^{-b k} & =1 \\
e^{b k} & =2 \\
b k & =\log _{e} 2 \\
k & =\frac{1}{b} \log _{2} e \\
k & =10 \log _{e} 2 \\
k & \approx 6 \cdot 93
\end{aligned}
$$

