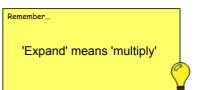
# **Section 1.1 Polynomial expressions**

4. Simplify each of the following.

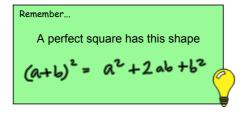
(i) 
$$3x^2 - 6x + 7 + 5x^2 + 2x - 9$$

$$= 7x^2 - 4x - 2$$

You can only add or subtract like terms


**6.** Expand each of the following.

(iii) 
$$(3x - 2)(x + 3)$$


$$= 3x(x + 3) - 2(x + 3)$$

$$= 3x^{2} + 9x - 2x - 6$$

$$= 3x^{2} + 7x - 6$$



10. If  $25x^2 + tx + 4$  is a perfect square for all values of x, find the value of t.



$$(5x+2)^2 = 25x^2 + 20x + 4$$
  
 $\Rightarrow t = 20$ 

23. Simplify each of the following:

(i) 
$$\frac{2x^2 + 5x - 3}{2x - 1} = \frac{(2x - 1)(x + 3)}{(2x - 1)} = x + 3$$

## Section 1.2 Polynomial functions, an introduction

- 11. The volume of a cone, V(r, h), is given by the formula  $V(r, h) = \frac{1}{3}\pi r^2 h$ , where r is the radius and h is the perpendicular height of the cone. Find
  - (i) the volume, in terms of  $\pi$ , of a cone with height 21 cm and radius 14 cm
  - (ii) the volume of a cone, in terms of r and  $\pi$ , if the cone has the same height as the radius r
  - (iii) the volume of a cone, in terms of h and  $\pi$ , if the radius of the base is twice the height h.

(i) 
$$h=21 \text{ cm}$$
  $r=14 \text{ cm}$ 

$$V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi (14)^2 (21) = 1372 \pi \text{ cm}^3$$

(ii) 
$$h=r$$

$$V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi (r)^2 (r) = \frac{1}{3} \pi r^3 \quad \text{cm}^3$$

(iii) 
$$r = 2h$$
  

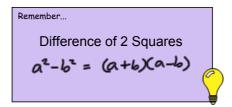
$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (2h)^2 h = \frac{1}{3}\pi 4h^2 h = \frac{4}{3}\pi h^3$$

# **Section 1.3 Factorising algebraic expressions**

Using the highest common factor, factorise each of the following:

7. 
$$2a^2b - 4ab^2 + 12abc$$

$$= 2ab(a - 2b + 6c)$$


Factorise each of the following by grouping terms.

12. 
$$2c^2 - 4cd + c - 2d$$

$$= 2c(c-2d) + 1(c-2d)$$
$$= (2c+1)(c-2d)$$

Using the difference of two squares, factorise the following:

23. 
$$1 - 36x^2$$
=  $(1 + 6x)(1 + 6x)$ 



Factorise each of the following quadratic expressions:

38. 
$$2x^2 - 7x + 3$$

$$= (2x - 1)(x - 3)$$

$$= (6x - 1x = -7x)$$

$$= (6x - 1x = -7x)$$

Factorise each of the following quadratic expressions:

**50.** 
$$12x^2 + 17xy - 5y^2$$

$$(4x - y)(3x + 5y)$$

#### FACTERS TE CONSIDER

## **FACTORISE**

**53.** (i) 
$$27x^3 - y^3$$

$$= (3x - y)(9x^2 + 3xy + y^2)$$

Remember

Difference of 2 cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

# **Section 1.4 Simplifying algebraic fractions**

**2.** Express each of the following as a single fraction:

(h) 
$$\frac{3x+5}{6} - \frac{2x+3}{4} - \frac{1}{12}$$

$$= 2 (3x+5) - 3(2x+3) - 1(1)$$

$$= 6x+16 - 6x-9-1 = 0$$

$$= 0$$

3. By factorising the numerator and the denominator fully, simplify each of the following.

(v) 
$$\frac{2}{a+4} - \frac{a+2}{a^2-9}$$

$$= \frac{2(a^2-9) - (a+4)(a+2)}{(a+4)(a^2-9)}$$
in note the denominator is ok like this

$$= \frac{2a^2 - 18 - \left[a^2 + 2a + 4a + 8\right]}{(a+4)(a^2-9)}$$

$$= \frac{2a^2 - 18 - a^2 - 6a - 8}{(a+4)(a^2-9)} = \frac{a^2 - 6a - 26}{(a+4)(a^2-9)}$$

Remember...

You can use the 'bow-tie' method to add/subtract fractions



<sup>\*</sup> note: answer in book is incorrect

(iii) 
$$\frac{x+y}{\frac{1}{x}+\frac{1}{v}}$$

multiply each part by xy

$$= \frac{x(xy) + y(xy)}{\frac{1}{x}(xy) + \frac{1}{y}(xy)} = \frac{xy(x+y)}{y+x}$$

## 11. Simplify each of the following.

(i) 
$$\frac{\frac{a+b}{a-b} - \frac{a-b}{a+b}}{1 + \frac{a-b}{a+b}}$$

multiply each part by (a+b)(a-b)

$$= \frac{(a+b)(a+b)(g-b)}{(g-b)} = \frac{(a-b)(a+b)(a-b)}{(a+b)}$$

$$= \frac{(a+b)(a+b)(g-b)}{(a+b)(a-b)} = \frac{(a+b)(a+b)(a-b)}{(a+b)}$$

Difference of 2 Squares
$$x^2-y^2 = (x+y)(x-y)$$

$$= \frac{(a+b)^2 - (a-b)^2}{(a-b)(a+b+a-b)}$$

$$= \frac{(a+b)^2 - (a-b)^2}{(a-b)(a+b+a-b)} = \frac{(a+b+a-b)(a+b-a+b)}{(a-b)(a+b+a-b)}$$
HCF

$$= \frac{(2a)(2b)}{(2a)(a-b)} - \frac{2b}{a-b}$$

## **Section 1.5 Algebraic identities**

6. Find the values of a and b if  $(2x + a)^2 = 4x^2 + 12x + b$  for all x.

Remember...

If 
$$ax^{2} + bx + c = dx^{2} + ex + f$$

then:  $a = d$ 
 $b = e$ 
 $c = f$ 

$$(2x + 3)^{2} = 4x^{2} + 12x + 9$$

$$\Rightarrow b = 9$$

**21.** If  $(x-2)^2$  is a factor of  $x^3 + px + q$ , find the value of p and the value of q.

$$(x-2)^{2} = X^{2} - 4x + 4$$

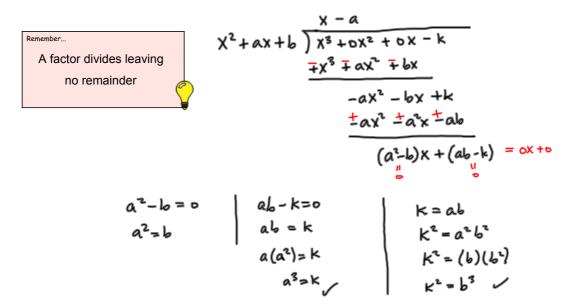
$$X^{2} - 4x + 4$$

$$X^{2} - 4x + 4$$

$$X^{3} + 0x^{2} + px + q$$

$$+ X^{3} + 4x^{2} + 4x$$

$$4x^{2} + (p-4)x + q$$


$$+ 4x^{2} + (p-4)x + q$$

$$(p+12)x + (q-16) = 0x + 0$$

$$(p+12)x + (q-16) = 0x + 0$$

$$(p+12)x + (q-16) = 0x + 0$$

**27.** If  $x^2 + ax + b$  is a factor of  $x^3 - k$ , show that (i)  $a^3 = k$  (ii)  $b^3 = k^2$ .



## **Section 1.6 Manipulating formulae**

(i)  $\frac{x}{y} = \frac{a+b}{a-b}$ 

- 7. In each of the following, express a in terms of the other variables:
  - multiply by LCD y(a b)  $x(a-b) = y(a+b) \qquad \text{expand}$   $ax bx = ay + by \qquad \text{bring 'a' terms to LHS}$   $ax ay = bx + by \qquad \text{factorise}$   $a(x-y) = b(x+y) \qquad \text{divide by } (x-y)$   $a = b(x+y) \qquad (x-y)$

You must do the same thing to both sides

# **Section 1.6 Manipulating formulae**

7. In each of the following, express a in terms of the other variables:

divide by c

(ii)  $b \not e - a \not e = a \not e$ .

You must do the same thing to both sides

- bring 'a' terms to RHS
- divide by 2
- <u>b</u> = a

10. Write c in terms of the other variables in each of the following.

(i) 
$$d = \sqrt{\frac{a-b}{ac}}$$

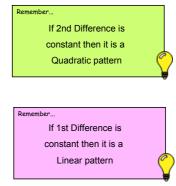
square both sides

$$d^2 = \frac{a-b}{ac}$$

multiply by c and divide by d2

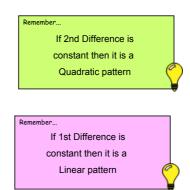
$$c = \frac{a-b}{ad^2}$$

**10.** Write *c* in terms of the other variables in each of the following.


(ii) 
$$b = \frac{2c-1}{c-1}$$
 multiply by c-1
$$b(c-1) = 2c-1$$
 expand
$$bc-b = 2c-1$$
 c terms to LHS
$$bc-2c = b-1$$
 factorise
$$c(b-2) = b-1$$
 divide by b-2
$$c = \frac{b-1}{b+2}$$

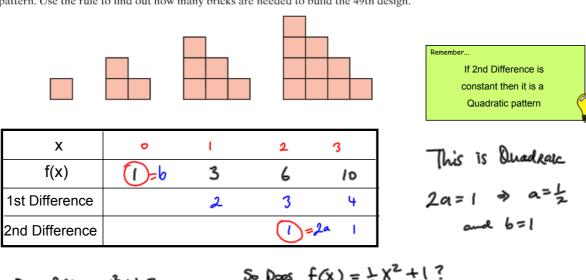
## Section 1.7 Algebraic patterns, an introduction

1. Examine each of the following patterns of numbers and determine if the pattern has a linear or quadratic relationship.


| Х              | 0 | l | 2  | 3  | 4  |  |
|----------------|---|---|----|----|----|--|
| f(x)           | 4 | 7 | 10 | 13 | 16 |  |
| 1st Difference |   | 3 | 3  | 3  | 3  |  |
| 2nd Difference |   |   | 9  | 0  | ٥  |  |






- 1. Examine each of the following patterns of numbers and determine if the pattern has a linear or quadratic relationship.
  - (i) 0, 3, 12, 27, 48, ...

| Х              | 0 | t | 2  | 3  | 4  |  |
|----------------|---|---|----|----|----|--|
| f(x)           | 6 | 3 | 12 | 27 | 48 |  |
| 1st Difference |   | 3 | 9  | 15 | 21 |  |
| 2nd Difference |   |   | 6  | 6  | 6  |  |



This is Quadratic

1. By converting the following designs into a number pattern, write down a rule for the pattern. Use the rule to find out how many bricks are needed to build the 49th design.



Does 
$$f(x) = ax^2 + b$$
? So Does  $f(x) = \frac{1}{2}x^2 + 1$ ?

Check  $f(3) = \frac{1}{2}(3)^2 + 1 = \frac{9}{2} + 1 = 5\frac{1}{2} \neq 10$ 

This means that we are missing the x term.

|                                             |                                                         | х              | 0      | ι       | 2                 | 3   |  |  |
|---------------------------------------------|---------------------------------------------------------|----------------|--------|---------|-------------------|-----|--|--|
|                                             |                                                         | f(x)           | l      | 3       | 6                 | 10  |  |  |
| We know -<br>X² tean is<br>$\frac{1}{2}$ X² | -                                                       | -1×2           | 0      | -5      | -2                | -4½ |  |  |
|                                             |                                                         | Linear         | الم    | 2.5     | 4                 | 5⋅ऽ |  |  |
| 2                                           |                                                         | 1st Difference |        | (1.5)=0 | 1.5               | 1.5 |  |  |
|                                             | <b>⇒</b>                                                | linear patti   | erh is | ax+b =  | $\frac{3}{2}$ × + | - 1 |  |  |
|                                             | $\Rightarrow f(x) = -\frac{1}{2}x^2 + \frac{3}{2}x + 1$ |                |        |         |                   |     |  |  |

# **Section 1.8 Solving equations**

4. Solve (iii) 
$$\frac{x-3}{4} = \frac{x-2}{5}$$
 multiply by the LCM = 20
$$5(x-3) = 4(x-2)$$

$$5x-15 = 4x-8$$

$$x = 7$$

6. Find the value of the unknown in each of the following equations:

(iv) 
$$\frac{3r-2}{5} - \frac{2r-3}{4} = \frac{1}{2}$$
 multiply by the LCM = 20

$$4(3r-2) - 5(2r-3) = 10(1)$$

$$12r - 8 - 10r + 15 = 10$$

$$2r + 7 = 10$$

$$2r = 3$$

$$r = \frac{3}{2}$$

**7.** Solve each of the following:

(ii) 
$$\frac{2}{3}(x-1) - \frac{1}{5}(x-3) = x+1$$
 multiply by the LCM = 15

$$10(X-1) - 3(X-3) = 15(X+1)$$
  
 $10X - 10 - 3X + 9 = 15X + 15$   
 $7X - 1 = 15X + 15$   
 $-16 = 8X$   
 $X = -2$ 

#### **Section 1.9 Solving simultaneous linear equations**

2. Solve

multiply by 5

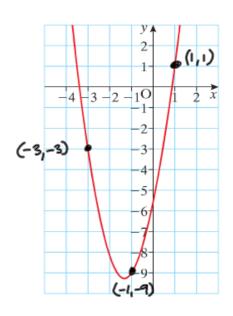
(iii) 
$$\frac{4x-2}{5} = \frac{48y}{105} \Rightarrow 4x-2 = 4y \Rightarrow 4x-4y = 2 \Rightarrow 2x-2y = 1$$
 $18x-20y=4 \Rightarrow 9x-10y=2$ 

which by 2

5. Solve the following equations with three unknowns.

(iii) 
$$2x + y - z = 9$$
 ①  
 $x + 2y + z = 6$  ②  
 $3x - y + 2z = 17$  ③

$$\begin{array}{rcl}
20+3 & 4x+2y-2z=18 \\
\underline{3x-y} & +2z=17 \\
7x+y & = 35 & 5
\end{array}$$


**9.** A curve of the form  $f(x) = y = ax^2 + bx + c$  is drawn as shown.

By picking any three points on the curve, form three equations connecting the coefficients a, b and c and hence solve to find f(x).

Sug IN (1,1) 
$$a(1)^2 + b(1) + c = 1$$
  
 $a+b+c=1$  ①

Sug. IN (-3,-3)  $a(-3)^2 + b(-3) + c = -3$   
 $9a-3b+c=-3$  ②

Sug. IN (-1,-9)  $a(-1)^2 + b(-1) + c = -9$   
 $a-b+c=-9$  ③



$$9a - 3b + c = -3$$

$$-a - b - c = -1$$

$$8a - 4b = -4$$

$$2a - b = -1$$

$$2a - 5 = -1$$

$$2a = 4$$

$$a+b+c=1$$
Sub in values
$$2+5+c=1$$

$$C=-6$$

**10.** 44,000 people attended a match in Croke Park. The two ticket prices on the day were €30 and €20. The total receipts for the game came to €1.2 million. How many people paid the higher ticket price?

let x = no. people who paid higher price let y = no. people who paid the lower price

$$x + y = 44,000$$
  
 $30x + 20y = 1,200,000$   
 $3x + 2y = 120,000$ 

$$3x + 2y = 120,000 
-2x - 2y = -88,000 
X = 32,000$$