Revision

The Line and

The Circle

14 Jan 2013

2.2 Co-ordinate geometry

- use slopes to show that two lines are
 - parallel
 - perpendicular
- recognise the fact that the relationship $ax + by + c = 0$ is linear
- solve problems involving slopes of lines

- calculate the area of a triangle
- recognise that $(x-h)^2 + (y-k)^2 = r^2$ represents the relationship between the x and y co-ordinates of points on a circle centre (h, k) and radius r
- solve problems involving a line and a circle with centre $(0, 0)$

- solve problems involving
 - the perpendicular distance from a point to a line
 - the angle between two lines
- divide a line segment internally in a given ratio $m:n$
- recognise that $x^2+y^2 +2gx+2fy+c = 0$ represents the relationship between the x and y co-ordinates of points on a circle centre $(-g,-f)$ and radius r where $r = \sqrt{(g^2+f^2 – c)}$

- solve problems involving a line and a circle
Coordinate geometry of the circle assumes knowledge of coordinate geometry of the line.

Coordinate Geometry of The Line
from Junior Cent

| Distance between 2 points | \[|ab| = \sqrt{(x_b-x_a)^2 + (y_b-y_a)^2}\] |
|---------------------------|--|
| Midpoint (average point) | \[\text{midpoint} = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)\] |
| Slope (given 2 points) | \[m = \frac{y_b-y_a}{x_b-x_a}\] |
| Slope (given graph) | \[m = \frac{\text{rise}}{\text{run}}\] |

Slope from equation of line
slope (given: \(y = mx + c\))

\[m = m_1\]

slope (given \(ax + by + c = 0\))

\[m = -\frac{a}{b}\]

parallel slopes
\[\Rightarrow m_1 = m_2\]

perpendicular slopes
\[\Rightarrow m_1 \times m_2 = -1\]

\[\frac{a}{b} \neq -\frac{b}{a}\] if \[m_1 = \frac{a}{b} \Rightarrow m_2 = -\frac{b}{a}\]

Equation of a line
\[y - y_1 = m(x - x_1)\]

Graph line (given \(ax + by + c = 0\))

Graph line (given: \(y = mx + c\))

Point on a line

Point of intersection of 2 lines

Image of \(a\) under...
axial symmetry
\[S_x \rightarrow a\]
central symmetry
\[S_y \rightarrow b\]
transformation
\[S \rightarrow c\]

Transformations

Let \(x = 0\), find \(y\)
Let \(y = 0\), find \(x\)

\[m = \frac{\text{rise}}{\text{run}}\]
\[c = \text{y-intercept}\]

If \((x_1, y_1)\) is on the line \(ax + by + c = 0\) then \(ax_1 + by_1 + c = 0\)

Solve simultaneous equations
Revision of Coordinate Geometry

January 12, 2013

Coordinate Geometry of The Line

Area of a circle with vertex (0, 0)

\[A = \frac{1}{2} \left| x_1 y_2 - x_2 y_1 \right| \]

⇒ transform triangle so it has a vertex at (0, 0)

The angle between 2 lines

\[\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} \]

The perpendicular distance from a point to a line

\[d = \left| \frac{a x_1 + b y_1 + c}{\sqrt{a^2 + b^2}} \right| \]

Internally divide a line segment in the ratio \(m:n \)

The Circle

Diameter, radius

Centre is midpoint of diameter

2r = d

c is midpoint of [ab]

Area & Circumference

Area = \(\pi r^2 \)

Circumference = 2\(\pi r \)

Area of sector = \(\frac{B}{360} \pi r^2 \)

Arc length = \(\frac{B}{360} \cdot 2\pi r \)

Angles standing on same arc

Angle of 90° stands on diameter

Perpendicular line from centre through chord bisects chord

Tangent is perpendicular to line [cd]
The Circle

Leaving Cert. Ordinary Level

1. **Equation of a circle**
 - Centre (a, b), Radius r
 - $(x-a)^2 + (y-b)^2 = r^2$

2. **Points in, on, outside a circle**
 - Sub. point into the equation
 - Point inside circle: $|cp| < r$
 - Point on circle: $|cp| = r$
 - Point outside circle: $|cp| > r$

3. **Intersection of a line and a circle**
 - Solve simultaneous equations
 - Rewrite linear
 - Sub into circle
 - Solve quadratic
 - Sub solutions into linear

4. **Circle intersecting axes**
 - Intersects x-axis where $y=0$
 - Intersects y-axis where $x=0$
 - \Rightarrow only 1 point of intersection
 - Also distance from c to T is r

5. **Proving a line is a tangent to a circle**

Leaving Cert. Higher Level

6. **General equation of a circle**
 - Centre $= (-g, -f)$
 - $x^2 + y^2 + 2gx + 2fy + c = 0$
 - Radius $= \sqrt{g^2 + f^2 - c}$

7. **Touching circles**
 - Touch externally
 - Touch internally
 - $d = r_1 + r_2$
 - $d = r_1 - r_2$

8. **Equation of tangent**
 - Find slope $[cf]$
 - Find slope T
 - $y - y_1 = m(x - x_1)$
 - Or use formula in log tables

9. **Common chord (or tangent)**
 - Circles s_1 and s_2 expressed in the form
 - $x^2 + y^2 + 2gx + 2fy + c = 0$
 - Then $s_1 - s_2 = L$

10. **Circles touching axes**
 - Touches x-axis
 - $g^2 = c$ and $r = |f|$
 - Touches y-axis
 - $f^2 = c$ and $r = |g|$