Inequalities

- > greater than
- greater than or equal to
- < less than
- ≤ less than or equal to

Example 1

Solve the inequality $3x + 7 \ge x + 2, x \in \mathbb{Z}$, and plot the solution on a number line.

-X,-7

÷2

 $3x + 7 \ge x + 2$ ≥ -5

2 -5/2 OR - 22

Z = Integer = Whole no.

Solve the inequality $\frac{1}{6}(x-1) \ge \frac{1}{3}(x-4), x \in \mathbb{R}$. Graph your solution on a number line.

x6

x -1

R = Real

Example 3

Solve the inequality $-9 < 3 - 4x \le 1, x \in \mathbb{R}$.

Graph your solution on the number line.

-3

÷4

X-1

Α.-

Rewrite

R= Beal

- (i) Find the solution set A, $\{x \mid 7 \le 10 3x, x \in R\}$.
- (ii) Find the solution set B, $\{x \mid 2 > \frac{4}{3} 2x, x \in R\}$.
- (iii) Find the set $A \cap B$ and graph the solution on the number line.

12. If a < n < b, and $100 < 2^n < 200$, find the values of *a* and *b*, where *a*, *n*, $b \in N$.

- **13.** If Give one example to show that if a > b > 0 and $n > 0 \Rightarrow a^n > b^n$. If Now give an example to show that if a > b > 0 and $n < 0 \Rightarrow a^n < b^n$. Write an equivalent set of conclusions for these:

 If a < b < 0 and n > 0.....,

 If a < b < 0 and n < 0.....
- (i) Let a=2 b=1 n=1(ii) Let a=2 b=1 n=1(iii) Let a=2 b=1 n=1(iv) Let a=-2 b=-1 n=1(v) Let a=-2 b=-1 n=1(v) Let a=-2 b=-1 b

Quadratic Inequalities

- > greater than
- ≥ greater than or equal to
- < less than
- ≤ less than or equal to

Solve the inequality $x^2 - 2x - 8 \le 0$.

Solve if =0

 $x^2 - 2x - 8 = 0$ (x - 4)(x + 2) = 0x = 4, x = -2

sketch graph

 $\begin{array}{c|c}
 & f(x) \\
\hline
 & x \\
\hline
 & -z \leq X \leq 4
\end{array}$

algebra method test x=0 value

Example 2

Find the range of values of k for which the equation $x^2 + (k - 4)x + (k - 1) = 0$ has real roots.

 $X = -6 \pm \sqrt{6^2 - 4ac}$ 2a

△≥0 ⇒ Real

Solve if f(k)=0

Sketch

Find the range of values of x for which $\frac{2x+1}{x+2} < \frac{1}{2}$.

Is (X+2) positive?

 $(x+2)^2 \geq 0$

 $2(x+2)^{2}(2x+1) < 1(x+2)^{2}2$ $(2x+4)(2x+1) < x^2 + 4x + 4$

4x2+2x+8x+4 < x2+4x+4

 $3x^{2} + 6x < 0$ $x^{2} + 2x < 0$ $x^{2} + 2x < 0$ $x^{2} + 2x = 0$ (x)(x + 2) = 0 x = 0, x = -2

If f(x) = 0?

Sketch

