Probability

Fundamental Principal of Counting states that if one event has **m** possible outcomes and a second event has **n** possible outcomes then the total possible number of outcomes is: **m x n**

Arrangements

We often multiply a list of numbers in descending order using the box method. We must be careful when conditions are applied. Example would be ways of rearranging the letters in the word BARTER $[6] \times [5] \times [4] \times [3] \times [2] \times [1] = 720$ This can be done on the calculator using 6!

How many of these begin with a vowel? $[2] \times [5] \times [4] \times [3] \times [2] \times [1] = 240$

How many don't begin with a vowel? 720 - 240 = 480

Combinations (Choosing Questions)

Ways of selecting items when the order is not important. The calculator has a button for this. Again we must be careful when conditions are applied. Example would be selecting 3 people from a group of 8.

 $\binom{n}{r} = \binom{n}{n-r}$

$$\binom{8}{3} = 8 \overset{n}{\underset{\square}{\square}} C_r 3 = 56$$

Remember in maths the word AND generally means to multiply, while the word OR generally means to add.

How can we select a committee of 3 people from 5 boys and 4 girls if there must be at least one boy and one girl on the committee.

(2 Boys And 1 Girl) OR (1 Boy AND 2 Girls)

 $\left(\binom{5}{2} \times \binom{4}{1}\right) + \left(\binom{5}{1} \times \binom{4}{2}\right)$

Standard Normal Tables

If the variables have a normal distribution we can use the tables to convert z-scores to probabilities

If we are asked Find $P \le 1.3$ we are being asked to find the probability that the result will be less than or equal to 1.3 standard deviations from the mean. Checking the tables tells us $P(z \le 1.3) = 0.9032$

This means 90.32% of the population will give readings less than 1.3 standard deviations from the mean.

$$z = \frac{x - \mu}{\sigma}$$

If asked what the probability is that the result is **between** 1.3 standard deviations

Curve is symmetrical so we can use this to work out negative values of *z*.

A **trial** is the act of doing an experiment in probability.

An **outcome** is one of the possible results of the trial.

If all outcomes of a trial are equally likely then the trial is **fair** or **unbiased**. Example would be flipping a coin.

A **sample space** is a list all the possible outcomes (list, two way table, tree diagram)

The **event** is the occurrence of one or more specific outcomes.

The best way to deal with more than one event (combined events) is a diagram. (Two Way Table or Tree Diagram)

Dependent events are events where the 2nd event is affected by the 1st.

Independent events are where the outcome of the 1st does NOT affect the outcome of the second.

$Relative Frequency = \frac{number of times the event happens in a trial}{total number of trials}$	Expected Value E(X) is the average outcome of an event $E(Y) = \sum_{i=1}^{N} e_i B(x)$
Expected Frequency = number of trials × relative frequency or probability	$E(X) = \sum x \cdot P(X)$
Probability of an event $P(E) = \frac{number of desirable outcomes}{total number of possible outcomes}$ This is most often best left as a fraction. one number over another.	To find we multiply every possible outcome by the probability for that outcome and then add all these values together. The expected value on rolling a die is $1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = 3\frac{1}{2}$
Mutually Exclusive have no outcomes in common. Events that CANNOT occur at the same time. Two events E and F are mutually exclusive if $E \cap F = \emptyset$	Bernoulli Trial There are two outcomes: success or failure The trials are independent.
In OR events we ADD the probabilities (events are NOT mutually exclusive) $P(E \cup F) = P(E \text{ or } F) = P(E) + P(F) - P(E \cap F)$	The probability of success does not change from one trial to another. Example would be scoring or missing a penalty.
In AND events we MULTIPLY the probabilities (events are mutually exclusive)	$\binom{n}{r} p^r q^{n-r}$
Conditional Probability $P(A B) = \frac{P(E \cap F)}{P(B)}$ Probability of A given that we know it is B is the probability that it is A and B over the Probability that it is B	p = probability of success q = probability of failure n = number of trials r = number of desired outcomes