Section 2.1 Quadratic equations

Example 1

Use factors to solve (i) $x^2 - 5x - 6 = 0$ (ii) $y^2 - 5y = 0$ (iii) $4t^2 - 100 = 0$

(1)
$$X^{2}-5x-6=0$$
 QUADRATIC
 $(X-6)(X+5)=0$
 $X=6 \mid X=-5$

(ii)
$$y(y-5)=0$$
 H.C.F
 $y=0 | y=5$

(iii)
$$4t^2-100=0$$
 Diff. 2 squares
 $(2t-10)(2t+10)=0$
 $t=5 | t=-5$

Aside

Method

62 $4t^{2} = 100$ $t^{2} = 25$ t = 1025 = 15

Example 2

Solve $x - 6 = \frac{3}{x}$. (Note: It is not always obvious that we are dealing with an equation of the form $ax^2 + bx + c = 0$.)

multiply by x

$$X^{2}-6X=3$$

$$X^{2}-6X-3=0$$

$$A=1$$
FACTOR method won't work
$$A=-6$$

$$X = \frac{+6 \pm \sqrt{(-6)^2 - 4(1)(-3)}}{2(1)} = \frac{+6 \pm \sqrt{36 + 12}}{2}$$
$$= \frac{6 \pm 455}{2} = 3 \pm 253$$

Aside

Multiply by LCM

IF
$$ax^2+bx+c=0$$

$$X = \frac{-6^{\frac{1}{2}}\sqrt{b^2-4ac}}{2a}$$

Example 3

Solve $x^4 + x^2 - 6 = 0$ for $x \in R$.

let
$$u = X^2$$

$$(4 + 3)(4 - 2) = 0$$

$$\chi^{2} = -3$$
 $X = \sqrt{-3}$
 $X = \sqrt{3}$
 $X = \sqrt{3}$

Aside

Substitution Method

Example 4

Solve $2x + 3\sqrt{x} = 5$ for $x \in R$.

$$3\int x = 5 - 2x$$

$$\left(3\sqrt{x}\right)^2 = \left(5 - 2x\right)^2$$

$$9x = 25 - 20x + 4x^2$$

$$4x^2 - 29x + 25 = 0$$

$$(x - 1)(4x - 25) = 0$$

 $x = 1 | x = 25/4$

Aside

- · 15 olete Surd
- · Square
- · solve

Section 2.1 Quadratic equations

2. Use the quadratic formula to solve each of the following, giving your answers correct to one place of decimals:

(a) (i)
$$x^2 - 2x - 2 = 0$$

3. Use the quadratic formula to solve each of the following, leaving your answers in surd form:

(a) (i)
$$3x^2 + 4x - 5 = 0$$

4. Solve the following equations:

(a) (i)
$$\frac{x+7}{3} + \frac{2}{x} = 4$$

$$x^{2}+7x+6=1.2x$$
 $x^{2}-5x+6=0$
 $(x-6)(x+1)=0$
 $x=6 \mid x=-1$

5. By finding a suitable substitution, solve each of the following:

(c)
$$\left(y + \frac{4}{y}\right)^2 - 9\left(y + \frac{4}{y}\right) + 20 = 0$$

Let $x = y + \frac{4}{y}$

$$(x - 5)(x - 4) = 0$$

$$x = 5 \quad | x = 4$$

Sub back

multiply by y

$$5y = y^{2} + 4$$

 $y^{2} - 5y + 4 = 0$
 $(y - 4)(y - 1) = 0$
 $y = 4 | y = 1$

multiply by y

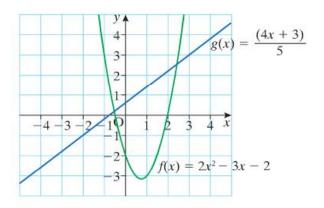
$$4y = y^{2} + 4$$

$$y^{2} - 4y + 4 = 0$$

$$(y - 2)(-2) = 0$$

$$y = 2 \mid y = 2$$

10. The graphs of the functions


$$f(x) = 2x^2 - 3x - 2$$
 and $g(x) = \frac{4x + 3}{5}$

are drawn as shown. Using the graphs, estimate the solutions of the following equations

(b)
$$g(x) = 0$$

(c)
$$f(x) = g(x)$$
.

(c)
$$X = -0.6$$
 and $X = 2.4$

Section 2.2 Nature of quadratic roots

Example 1

Evaluate the discriminant of each of the following, stating whether the equation has

(i) two distinct real roots (ii) two identical real roots (iii) no real roots.

(a)
$$3x^2 + 5x - 1 = 0$$

(b)
$$49x^2 + 42x + 9 = 0$$

(c)
$$2x^2 + 8x + 9 = 0$$

(d)
$$2x^2 + 7x + 4 = 0$$

2 Real

2 identical

=-8<0 no Real

$$\triangle = (7)^{2} - 4(2)(4)$$

$$= 49 - 32$$

$$= 17 > 0$$

Aside

$$\Delta = b^2 - 4ac$$

2 real Roots

△ Co 2 Imaginary Roots

Example 2

Find the values of k so that $-8 + kx - 2x^2 = 0$ has equal roots.

$$(k)^{7}-4(-8)(-2)=0$$

Aside

Example 3

Given the equation $px^2 + (p + q)x + q = 0$.

- (i) Show that the roots are real for all values of p and $q \in R$.
- (ii) Show that the roots are rational.
- (iii) Hence find
 - (a) the roots, in terms of p and q
 - (b) the factors, in terms of p and q.

$$px^2 + (p+q)x + q = 0 \rightarrow q = p, b = (p+q), c = q$$

$$px^2 + (p+q)x + q = 0 \rightarrow a = p, b = (p+q), c = q.$$

Aside

$$(any no.)^2 \ge 0$$

Example 3

Given the equation $px^2 + (p + q)x + q = 0$.

- (i) Show that the roots are real for all values of p and $q \in R$.
- (ii) Show that the roots are rational.
- (iii) Hence find
 - (a) the roots, in terms of p and q
 - (b) the factors, in terms of p and q.

$$px^2 + (p+q)x + q = 0 \rightarrow a = p, b = (p+q), c = q.$$

$$P \times^{2} + (p+q) \times + q = 0$$
Factors:
$$(P \times + q) (x + 1) = 0$$
Roots are
$$X = -\frac{q}{p} \quad | \quad X = -1$$

Aside

Roots are
Rational if
they can be
written as
a fraction
of 2 integers

this would happen if Δ = perfect Square