# **Section 1.1 Polynomial expressions**

4. Simplify each of the following.

(i) 
$$3x^2 - 6x + 7 + 5x^2 + 2x - 9$$

**6.** Expand each of the following.

(iii) 
$$(3x - 2)(x + 3)$$

10. If  $25x^2 + tx + 4$  is a perfect square for all values of x, find the value of t.

23. Simplify each of the following:

(i) 
$$\frac{2x^2 + 5x - 3}{2x - 1}$$

#### Section 1.2 Polynomial functions, an introduction

- 11. The volume of a cone, V(r, h), is given by the formula  $V(r, h) = \frac{1}{3}\pi r^2 h$ , where r is the radius and h is the perpendicular height of the cone. Find
  - (i) the volume, in terms of  $\pi$ , of a cone with height 21 cm and radius 14 cm
  - (ii) the volume of a cone, in terms of r and  $\pi$ , if the cone has the same height as the radius r
  - (iii) the volume of a cone, in terms of h and  $\pi$ , if the radius of the base is twice the height h.

# **Section 1.3 Factorising algebraic expressions**

Using the highest common factor, factorise each of the following:

7. 
$$2a^2b - 4ab^2 + 12abc$$

Factorise each of the following by grouping terms.

12. 
$$2c^2 - 4cd + c - 2d$$

Using the difference of two squares, factorise the following:

**23.** 
$$1 - 36x^2$$

Factorise each of the following quadratic expressions:

38. 
$$2x^2 - 7x + 3$$

Factorise each of the following quadratic expressions:

**50.** 
$$12x^2 + 17xy - 5y^2$$

#### **FACTORISE**

**53.** (i) 
$$27x^3 - y^3$$

# **Section 1.4 Simplifying algebraic fractions**

2. Express each of the following as a single fraction:

(h) 
$$\frac{3x+5}{6} - \frac{2x+3}{4} - \frac{1}{12}$$

3. By factorising the numerator and the denominator fully, simplify each of the following.

(v) 
$$\frac{2}{a+4} - \frac{a+2}{a^2-9}$$

7. Simplify (iii) 
$$\frac{x+y}{\frac{1}{x} + \frac{1}{y}}$$

11. Simplify each of the following.

(i) 
$$\frac{\frac{a+b}{a-b} - \frac{a-b}{a+b}}{1 + \frac{a-b}{a+b}}$$

## **Section 1.5 Algebraic identities**

6. Find the values of a and b if  $(2x + a)^2 = 4x^2 + 12x + b$ , for all x.

**21.** If  $(x-2)^2$  is a factor of  $x^3 + px + q$ , find the value of p and the value of q.

**27.** If  $x^2 + ax + b$  is a factor of  $x^3 - k$ , show that (i)  $a^3 = k$  (ii)  $b^3 = k^2$ .

### **Section 1.6 Manipulating formulae**

- 7. In each of the following, express a in terms of the other variables:
  - (i)  $\frac{x}{y} = \frac{a+b}{a-b}$  (ii) bc ac = ac.

- 10. Write c in terms of the other variables in each of the following.
  - (i)  $d = \sqrt{\frac{a-b}{ac}}$  (ii)  $b = \frac{2c-1}{c-1}$

#### Section 1.7 Algebraic patterns, an introduction

- **1.** Examine each of the following patterns of numbers and determine if the pattern has a linear or quadratic relationship.
  - (a) 4, 7, 10, 13, 16, ...

- 1. Examine each of the following patterns of numbers and determine if the pattern has a linear or quadratic relationship.
  - (i) 0, 3, 12, 27, 48, ...

1. By converting the following designs into a number pattern, write down a rule for the pattern. Use the rule to find out how many bricks are needed to build the 49th design.



#### **Section 1.8 Solving equations**

4. Solve

(iii) 
$$\frac{x-3}{4} = \frac{x-2}{5}$$

6. Find the value of the unknown in each of the following equations:

(iv) 
$$\frac{3r-2}{5} - \frac{2r-3}{4} = \frac{1}{2}$$

**7.** Solve each of the following:

(ii) 
$$\frac{2}{3}(x-1) - \frac{1}{5}(x-3) = x+1$$

#### **Section 1.9 Solving simultaneous linear equations**

2. Solve (iii) 
$$\frac{4x-2}{5} = \frac{8y}{10}$$
  
  $18x - 20y = 4$ 

5. Solve the following equations with three unknowns.

(iii) 
$$2x + y - z = 9$$
  
 $x + 2y + z = 6$   
 $3x - y + 2z = 17$ 

- **9.** A curve of the form  $f(x) = y = ax^2 + bx + c$  is drawn as shown.
  - By picking any three points on the curve, form three equations connecting the coefficients a, b and c and hence solve to find f(x).



**10.** 44,000 people attended a match in Croke Park. The two ticket prices on the day were €30 and €20. The total receipts for the game came to €1.2 million. How many people paid the higher ticket price?