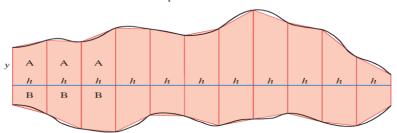
Area and Volume Section 6.4

Section 6.4 Trapezoidal rule for calculating area _

To calculate the areas of shapes with irregular boundaries, e.g. fields, lakes, etc., surveyors have usually divided the area into a series of parallel strips, each in the shape of a trapezium; a quadrilateral with two of the four sides parallel to each other.



A straight line is drawn across the centre of the area, dividing it into a series of two different areas, A and B.

The area of each section, above and below the line, can be calculated separately using the formula for the area of a trapezium and then added together.

Along the line and at equal intervals of h, perpendicular lines are drawn up to the boundary. These ordinates (offsets) – y_1 , y_2 , y_3 , etc – are the parallel sides of the

Using the area formula for a trapezium, $\frac{a+b}{2} \times h$, we get

$$\mathbf{A}_1 = \frac{y_1 + y_2}{2} \times h. \text{ Similarly, } \mathbf{A}_2 = \frac{y_2 + y_3}{2} \times h, \text{ and so on.}$$

Therefore, the total area $A = A_1 + A_2 + A_3 + A_4$. $=\left(\frac{y_1+y_2}{2}\times h\right)+\left(\frac{y_2+y_3}{2}\times h\right)+\left(\frac{y_3+y_4}{2}\times h\right)+\left(\frac{y_4+y_5}{2}\times h\right)$

$$= \left(\frac{y_1 + y_2}{2} \times h\right) + \left(\frac{y_2 + y_3}{2} \times h\right) + \left(\frac{y_3 + y_4}{2} \times h\right) + \left(\frac{y_4 + y_5}{2} \times h\right)$$

$$= \frac{h}{2}(y_1 + y_2 + y_2 + y_3 + y_3 + y_4 + y_4 + y_5)$$

$$= \frac{h}{2}[y_1 + 2(y_2 + y_3 + y_4) + y_5]$$

In words, Area $\approx \frac{\text{interval width}}{2} [\text{first height} + \text{last height} + 2(\text{remaining heights})]$

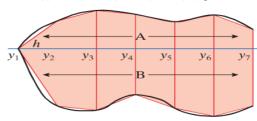
When n strips are made, the Trapezoidal formula becomes

Area
$$\approx \frac{h}{2} [y_1 + y_n + 2(y_2 + y_3 + y_4 + \dots + y_{n-1})]$$

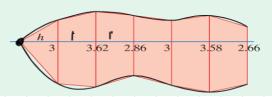
- **Note 1:** Because the top of each trapezium does not match the boundary at all points, the area obtained by this formula is only approximate.

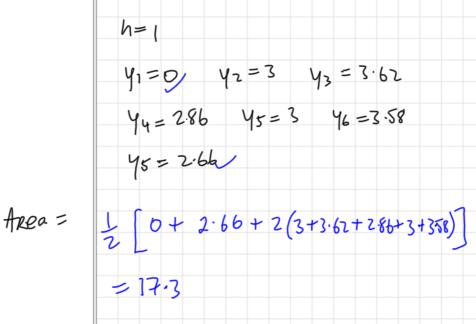
 Its accuracy depends on the gap width *h*; the smaller the gap width, the greater the accuracy.
- Note 2: If offsets are measured from the same points above and below the line, then the area (A + B) can be obtained using

Area
$$\approx \frac{h}{2}[y_1 + y_7 + 2(y_2 + y_3 + y_4 + y_5 + y_6)]$$

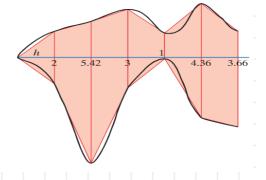


Using the measurements provided, find the area of this shape given h = 1 unit.



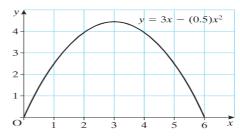


- 2. If h = 1 cm and the lengths of the offsets are as shown, find the area of this map.
 - (i) If the area of the map is 17.23 cm², find the percentage error in using the trapezoidal rule and h = 1 cm.
 - (ii) By taking new measurements with $h = \frac{1}{2}$ cm, find a second estimate of the area.



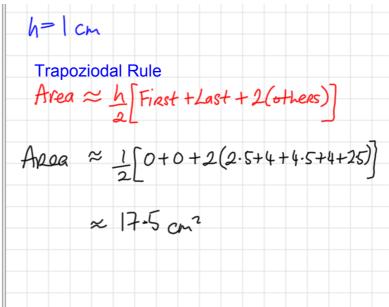
$$\approx \frac{1}{2} \left[0 + 3.66 + 2 \left(2 + 5.42 + 3 + 1 + 4.36 \right) \right]$$

3. Using the trapezoidal rule, and an interval value of (i) h = 1 cm and (ii) h = 0.5 cm, estimate the area under the curve $y = 3x - (0.5)x^2$.

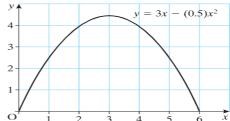


use calculator

Χ	f(x)
O	0
J	2-5
2	4
3	4.5
4	4
5	2.5
6	D

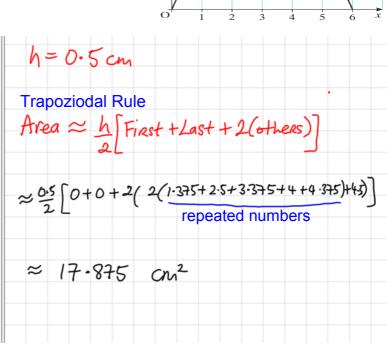


3. Using the trapezoidal rule, and an interval value of (i) h = 1 cm and (ii) h = 0.5 cm, estimate the area under the curve $y = 3x - (0.5)x^2.$



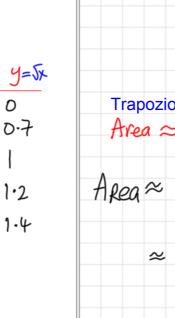
use calculator

Χ	f(x)
0	D
0.5	1.375
l	2.5
1.5	3.375
2	4
2.5	4.375
3	4.5
3.5	4.375
4	4
4.5	3.375
5	2.5
5.5	1.375
6	0
•	
	I



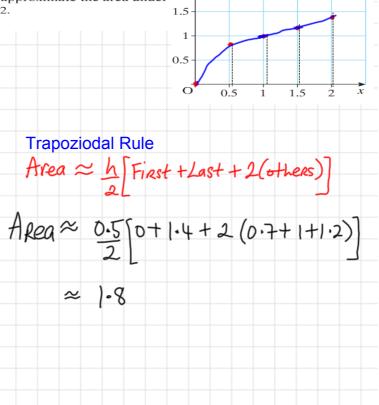
4. Copy these axes and use them to plot the function $y = \sqrt{x}$ for $0 \le x \le 2$.

Using four trapezoids, approximate the area under the curve for $0 \le x \le 2$.

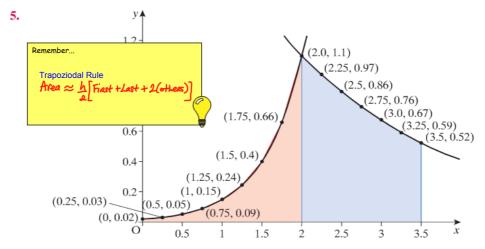


1.5

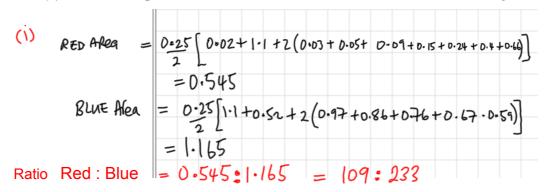
2

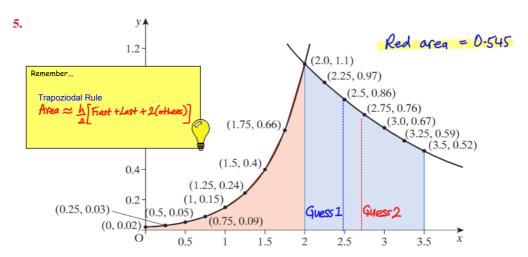


2



- (i) Using an interval width of 0.25, find the ratio of the coloured areas under the curve.
- (ii) Estimate, using trial and error, the maximum value of x so that both areas are equal.





- (i) Using an interval width of 0.25, find the ratio of the coloured areas under the curve.
- (ii) Estimate, using trial and error, the maximum value of x so that both areas are equal.

Guess 1 If max.
$$x$$
 is 2.5 then blue area
$$= 0.25 \left[1.1 + 0.86 + 2(0.97) \right] = 0.4875$$
Guess 2 If max x is 2.75 then blue area
$$= 0.25 \left[1.1 + 0.76 + 2(0.97 + 0.86) \right] = 0.69$$

$$\Rightarrow \text{Sstimate: } X = 2.6$$

6. An outline of the map of Ireland is given. If the scale used is 1 cm = 20 km, use the trapezoidal rule to estimate the area of the island of Ireland.

