6th Year

Maths Test

Solutions

Christmas 1012

Mr. Roche

PART 1 Differentiation

	(a) Differentiate	√x (X+2)	with respect to x.
Could use product Rule But easier to multiply out	$y = (x)^{\frac{1}{2}} ($ = $x^{3/2} +$	x+2) - 2 x ²	
	$\frac{dy}{dx} = \frac{3}{2}$	κ ² + χ ⁻¹ 2	

(b) fadametric equations of a curve are:
$$x = \frac{2k-1}{k+2}$$
, $y = \frac{k}{k+2}$, $k \in \mathbb{R} \setminus \{-2\}$
(i) Find $\frac{dy}{dx}$.
(ii) What does the answel in part (i) tell you about the shope of the graph?
Parametric Differentiation
(i) $\frac{dy}{dx} = \frac{dy}{dt}$.
(i) $\frac{dy}{dx} = \frac{1}{dx}$
(i) $\frac{dy}{dx} = \frac{1}{dx}$
Quotient Rule
 $\frac{dy}{dx} = \frac{\sqrt{dx}}{\sqrt{x}}$
(ii) $\frac{dy}{dx} = \frac{2}{(k+2)(1) - (k)(1)} = \frac{k+2-k}{(k+2)^k} = \frac{2}{(k+2)^k}$
 $\frac{dx}{dx} = \frac{2}{dx}$
 $\frac{dx}{dx} = \frac{(k+2)(2) - (2k-1)(1)}{(k+2)^k}$
 $\frac{dy}{dx} = \frac{(k+2)^2}{5}$
 $\frac{dy}{dx} = \frac{dy}{dx} - \frac{k}{2}$
 $\frac{dy}{dx} = \frac{2k+4}{2k} - \frac{2k+1}{5} = \frac{5}{5}$
(ii) Constant slope means that it is a straight line graph.

(c)
$$f(x) = \log_e 3x - 3x$$
, where $x > 0$
(i) Show that $(\frac{1}{3}, -1)$ is a local maximum point of $f(x)$.

$$f(x) \rightarrow f'(x)$$
at maximum
$$f'(x) = 0$$
and
$$f'(x) < 0$$

$$f'(x) = \frac{1}{x} - 3 = 0$$

$$f'(x) = 0$$

$$\frac{1}{x} = \frac{3}{1} \Rightarrow x = \frac{1}{3}$$
Sub into function to find y value
$$f(\frac{1}{3}) = l_{h}(3(\frac{1}{3}) - 3(\frac{1}{3}) = l_{h} 1 - 1 = -1$$

$$\Rightarrow point (\frac{1}{3}, -1) \text{ is a max. or min.}$$

$$f'(x) = -x^{-2}$$

$$f''(\frac{1}{3}) = -(\frac{1}{3})^{-2} = -9 < 0 \Rightarrow \text{ maximum.}$$

(ii) Differentiate $\frac{1}{x}$ with respect to x from first principles

f'(×)=	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$f(x) = \frac{1}{x}$ $f(x+h) = \frac{1}{(x+h)}$				
		f (x + h f (x + h) - f (x) =) - f (x)	$\frac{1}{X+h} - \frac{1}{X}$	$= \frac{x - (x + h)}{x (x + h)}$	$= \frac{-h}{\chi^2 + h\chi}$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{-1}{x^2 + (0)x} = \frac{-1}{x^2}$					

(a) The equation $\chi^3 + \chi^2 - 4 = 0$ has only one Real Root Taking $\chi_1 = \frac{3}{2}$ as the first approximation to the Root

use the Newton-Raphson method to find χ_2 the second approximation.

Newton-Raphson

$$\chi_2 = \chi_1 - \frac{f'(\chi_1)}{f'(\chi_1)}$$

$$f(\chi) = \chi^3 + \chi^2 - 4$$

$$f'(\chi) = 3\chi^2 + 2\chi$$

$$f(\frac{3}{2}) = (\frac{3}{2})^3 + (\frac{3}{2})^2 - 4 = \frac{13}{8}$$

$$f'(\frac{3}{2}) = 3(\frac{3}{2})^2 + 2(\frac{3}{2}) = \frac{39}{4}$$

$$\chi^2 = \frac{3}{2} - \frac{(3/8)}{(39/4)} = \frac{4}{3}$$

- (b) The equation of the curve is $y = 3x^4 2x^3 9x^2 + 8$
 - (i) show the curve has a local maximum at the point (0,8)
 - (ii) find the coordinates of the two local minimum points or the curve.
 - (iii) Draw a Sketch of the curve.

(c) A curve is defined by the equation

(i) Find $\frac{dy}{dx}$ in terms of x and y.

$$x^2y^3 + 4x + 2y = 12$$

(ii) Show that the tangent to the curve at the point (0, 6) is also the tangent to it at the point (3, 0)

Part 2: Trigonometry

The diagram below shows the graph of the function $f: x \mapsto \sin 2x$. The line 2y = 1 is also shown.

- (a) On the same diagram above, sketch the graphs of $g: x \mapsto \sin x$ and $h: x \mapsto 3\sin 2x$. Indicate clearly which is g and which is h.
- (b) Find the co-ordinates of the point P in the diagram.

(ii) Find the length of the strap [DE] such that the angle ✓ between the panel and the ground is 60°

(ii) Find the maximum value of \checkmark

$$f: X \to X^3 + (1 - K^2) X + K$$
,

(c) Find the Set of values of k for which f has exactly one real Root.

(a) Solve the simutaneous equations				
2 2 2	x + 8y - 3z = -1 x - 3y + 2z = 2 x + y + z = 5 (3)			
() - (3	2x + 8y - 3z = -1 - <u>2x - y - z = -5</u> 7y - 4z = -6 (4)			
. (3) - (2)	2x + y + z = 5 - 1x + 3y - 2z = -2 4y - z = 3 (5)			
(4) - 4 S	7y - 4z = -6 -16y + 4z = -12 -9y = -18 y = 2			
Sub into (5)	4(2) - 2 = 3 8 - 2 = 3 2 = 5			
sub into (3)	2x + 2 + 5 = 5 2x = -2 x = -1			
Check: ① ②	2(-1) + 8(2) - 3(5) = -1 $2(-1) - 3(2) + 2(5) = 2$ $2(-1) + 2 + 5 = 5$			

(b) Find the set of all real values of \boldsymbol{x} for which

$$\frac{2x-5}{X-3} \leq \frac{5}{2}$$

	$\frac{2 \times -5}{\times -3} - \frac{5}{2} \le 0$
	$\frac{2(2x-5)-5(x-3)}{2(x-3)} = \frac{4x-10-3x+15}{2(x-3)}$
	$=\frac{-X+5}{2X-6} \leq 0$
Consider	-X+5=0 => -X+5=0 => X=5 2x-6
Consider	$- \chi + 5$ $< \circ$ For this to be true, denominator and numerator must have different signs.
Case 1: positive numerator negative denominator	$\begin{array}{c} -\chi + 5 > 0 \Rightarrow -\chi > -5 \Rightarrow \chi < 5 \\ 2\chi - 6 < 0 \Rightarrow 2\chi < 6 \Rightarrow \chi < 3 \end{array}$
Case 2: negative numerator and positive denominator	- X+5 <0 => - X <- S => x>5] => x>5 2x-6>0 => 2x>6 => x>3}
check:	$X > 5$ eg. $X = 6 \Rightarrow -(6) + 5 = -1 < 0$, Tene $\sqrt{2(6) - 6} = 6$
	X < 3 eq X = 0 = 7 - (0) + 5 = -5 < 0, true / 2(0) - 6 = 6
Solution:	$3>X \leq 5$, $X \in \mathbb{R}$