Differentiation

	Differentiation			Using Chain Rule			le	Inverse Trigonometric		
	f(x)	f'(x)		f(x)	f '	(<i>x</i>)		f(x)	f'(x)	
	x ⁿ	nx^{n-1}		u ⁿ	nu ⁿ⁻	$-1 \cdot \frac{a}{a}$	$\frac{du}{dx}$	$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$	
	sin x	cos x		sin u	COS	$u.\frac{d}{d}$	$\frac{u}{x}$	$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$	
	cos x	-sin x		cosu	—sin	u	$\frac{du}{dx}$			
	tan x	sec ² x		tan u	sec ²	u. ($\frac{du}{dx}$	<i>f</i> (<i>x</i>)	f'(x)	
	e ^x	e ^x		e ^u	e ^u	$\frac{du}{dx}$	-	$\sin^{-1}u$	$\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}$	
	ln x	$\frac{1}{x}$		ln u	$\frac{1}{u}$	$\frac{du}{dx}$		$\tan^{-1} u$	$\frac{1}{1+u^2} \cdot \frac{du}{dx}$	
	Differentiation of a constant $= 0$									
ſ	Differentiation by Rule Multiply by the power and reduce the power by 1.						Chain Rule Bring the power down to the front, reduce the power by 1			
	$y = x^{n}$ $\frac{dy}{dx} = nx^{n-1}$			Remember $\sqrt{x} = x^{\frac{1}{2}}$ $\frac{1}{x^n} = x^{-n}$			and n deriv	and multiply by the derivative of the bracket.		
							$y = \iota$ dy	u ⁿ du		
		$\frac{1}{\sqrt[n]{x^m}} = x^{-1}$		$x^{-\frac{n}{m}}$		$\frac{dy}{dx} =$	$nu^{n-1} \cdot \frac{du}{dx}$			

Implicit Differentiation

- 1. Differentiate term by term, on both sides with respect to *x*.
- 2. Bring all the terms with $\frac{dy}{dx}$ to the left and bring all the other terms to the right.
- 3. Make $\frac{dy}{dx}$ the subject of the equation by factorising and dividing across where necessary
- 4. When we differentiate *y* we get $\frac{dy}{dx}$

Given that
$$2x^3 + 3xy^2 - y^3 + 6 = 0$$

evaluate $\frac{dy}{dx}$

$$6x^{2} + \left(3x(2y)\left(\frac{dy}{dx}\right) + y^{2}(3)\right) - 3y^{2}\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{-6x^{2} - 3y^{2}}{6xy - 3y^{2}}$$

Product Rule

First by the derivative of the Second plus Second by the derivative of the first.

$$v = uv$$

1

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{dv}{dx}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$
$$x = 4t^{3}$$
$$y = (1+3t^{2})^{2}$$
$$\frac{dx}{dt} = 12t^{2}$$

Parametric Equation

$$\frac{dy}{dt} = 2(1+3t^2)(6t)$$

dν

$$\frac{\frac{dy}{dt} = 12t(1+3t^2)}{\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{12t(1+3t^2)}{12t^2}}{\frac{dy}{dx} = \frac{1+3t^2}{t}}$$

Quotient Rule

Bottom by the derivative of the top minus Top by the derivative of the bottom all over the Bottom squared

$$y = \frac{u}{v}$$
$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{du}{dx}}{v^2}$$

Graph Applications	Newton Rhapson	Rates of Change dy is called the (rate of change of a with respect to	
Turning Points d^2y	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	$rac{dx}{dx}$ is called the rate of change of y with respect to x'. It shows how changes in y are related to changes in x. $rac{dy}{dx} = 5$, then y is increasing 5 times as fast as x increases	
Solve $\frac{dy}{dx} = 0$ then put <i>x</i> value into $\frac{dy}{dx^2}$	If x_n is an approximate solution of the equation $f(x) = 0$ then x_n is a better		
$\frac{d^2 y}{dx^2} > 0$ minimum	approximation.	Distance, Velocity & Acceleration A particle moving along a straight line such that,	
$\frac{d^2y}{dx^2} < 0 \qquad \qquad \text{maximum}$	Show that $1 - 3x - x^3 = 0$ has a real root between 0 and 1.	after t seconds, the distance moved, s metres, is given by $s = t^3 - 9t^2 + 15t - 3$	
$\frac{d^2 y}{dx^2} = 0$ point of inflection	$f(x) = 1 - 3x - x^{3}$ $f(0) = 1 - 3(0) - (0)^{3} = 1$	$\frac{ds}{dt} = velocity$	
Nature of the curve	$f(1) = 1 - 3(1) - (1)^3 = -3$ Since $f(x)$ changes sign between 0 and 1, the graph	$\frac{d^2s}{dt^2}$ = acceleration	
$\frac{dy}{dx} > 0$ increasing	cross the x axis and therefore a root lies between 0 and 1.	Related Rates of Change The radius of a circle increases at 4 cm/s. What is	
$\frac{dy}{dx} < 0$ decreasing	Starting with $x_1 = 0$ as a first approximation of $1 - 3x - x^3 = 0$, use Newton-Rhapson to find x_2 ,	The fact of increase of the area when the factus is 5 cm. Radius increases at 4cm/s. Therefore $\frac{dr}{dt} = 4$ and	
Asymptote	the second approximation.	asked to find $\frac{dA}{dt}$ when $r = 5$.	
Vertical AsymptoteBottom = 0Horizontal Asymptote $y = \lim_{x \to \infty} f(x)$	$f(x) = 1 - 3x - x^{3}$ f(0) = 1 - 3(0) - (0)^{3} = 1	$\frac{dA}{dt} = \frac{dr}{dt} \times \frac{dA}{dr}$	
Differentiation from 1 st Principles	$ \begin{cases} f'(x) = -3 - 3x^2 \\ f'(0) = -3 - 3(0)^2 = -3 \end{cases} $	We need to find $\frac{dA}{dr}$ Well $A = \pi r^2$	
f(x) = $f(x+h) =$ $f(x+h) - f(x) =$	$x_2 = x_1 - \frac{f(x_1)}{f'(x)_1}$	therefore $\frac{dA}{dr} = 2\pi$ $\frac{dA}{dr} = 4 \times 2\pi r$	
$\frac{f(x+h) - f(x)}{h} =$ $\lim_{h \to \infty} \frac{f(x+h) - f(x)}{h} =$	$ \begin{array}{c} x_2 = 0 - \frac{1}{-3} \\ x_2 = \frac{1}{2} \end{array} $	$\frac{dt}{dt} = 8\pi r$ at $t = 5$	
$h \rightarrow 0$ h	We could use this again with our formula to find x_3	$\frac{dA}{dt} = 40\pi$	