

Differentiation	
$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
x^{n}	$n x^{n-1}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec ^{2} x$
e^{x}	e^{x}
$\ln x$	$\frac{1}{\mathrm{x}}$

Using Chain Rule	
$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
u^{n}	$n u^{n-1} \cdot \frac{d u}{d x}$
$\sin u$	$\cos u \cdot \frac{d u}{d x}$
$\cos u$	$-\sin u \cdot \frac{d u}{d x}$
$\tan u$	$\sec ^{2} u \cdot \frac{d u}{d x}$
e^{u}	$e^{u} \cdot \frac{d u}{d x}$
$\ln u$	$\frac{1}{u} \cdot \frac{d u}{d x}$

Inverse Trigonometric	
$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
$\sin ^{-1} \frac{x}{a}$	$\frac{1}{\sqrt{a^{2}-x^{2}}}$
$\tan ^{-1} \frac{x}{a}$	$\frac{a}{a^{2}+x^{2}}$
$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
$\sin ^{-1} u$	$\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$
$\tan ^{-1} u$	$\frac{1}{1+u^{2}} \cdot \frac{d u}{d x}$

Differentiation of a constant $=0$

Differentiation by Rule

Multiply by the power and
reduce the power by 1 .

$$
\begin{aligned}
& y=x^{n} \\
& \frac{d y}{d x}=n x^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Remember } \\
& \sqrt{x}=x^{\frac{1}{2}} \\
& \frac{1}{x^{n}}=x^{-n} \\
& \frac{1}{\sqrt[n]{x^{m}}}=x^{-\frac{n}{m}}
\end{aligned}
$$

Chain Rule

Bring the power down to the front, reduce the power by 1 and multiply by the derivative of the bracket.
$y=u^{n}$
$\frac{d y}{d x}=n u^{n-1} \cdot \frac{d u}{d x}$

Implicit Differentiation

1. Differentiate term by term, on both sides with respect to x.
2. Bring all the terms with $\frac{d y}{d x}$ to the left and bring all the other terms to the right.
3. Make $\frac{d y}{d x}$ the subject of the equation by factorising and dividing across where necessary
4. When we differentiate y we get $\frac{d y}{d x}$

Given that $2 x^{3}+3 x y^{2}-y^{3}+6=0$
evaluate $\frac{d y}{d x}$
$6 x^{2}+\left(3 x(2 y)\left(\frac{d y}{d x}\right)+y^{2}(3)\right)-3 y^{2} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{-6 x^{2}-3 y^{2}}{6 x y-3 y^{2}}$

Parametric Equation

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{d y}{d t} \cdot \frac{d t}{d x} \\
& x=4 t^{3} \\
& y=\left(1+3 t^{2}\right)^{2} \\
& \frac{d x}{d t}=12 t^{2} \\
& \frac{d y}{d t}=2\left(1+3 t^{2}\right)(6 t) \\
& \frac{d y}{d t}=12 t\left(1+3 t^{2}\right) \\
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{12 t\left(1+3 t^{2}\right)}{12 t^{2}} \\
& \frac{d y}{d x}=\frac{1+3 t^{2}}{t}
\end{aligned}
$$

Product Rule

First by the derivative of the Second plus Second by the derivative of the first.

$$
y=u v
$$

$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d v}{d x}$

Quotient Rule

Bottom by the derivative of the top minus Top by the derivative of the bottom all over the Bottom squared

$$
\begin{aligned}
& y=\frac{u}{v} \\
& \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d u}{d x}}{v^{2}}
\end{aligned}
$$

Graph Applications

Turning Points

Solve $\frac{d y}{d x}=0$ then put x value into $\frac{d^{2} y}{d x^{2}}$
$\begin{array}{ll}\frac{d^{2} y}{d x^{2}}>0 & \text { minimum } \\ \frac{d^{2} y}{d x^{2}}<0 & \text { maximum }\end{array}$
$\frac{d^{2} y}{d x^{2}}=0$
point of inflection

Nature of the curve

$\frac{d y}{d x}>0$	increasing
$\frac{d y}{d x}<0$	decreasing

Asymptote

$\begin{array}{ll}\text { Vertical Asymptote } & \text { Bottom }=0 \\ \text { Horizontal Asymptote } & y=\lim _{x \rightarrow \infty} f(x)\end{array}$

$$
y=\lim _{x \rightarrow \infty} f(x)
$$

Differentiation from $1^{\text {st }}$ Principles

$f(x)=$
$f(x+h)=$
$f(x+h)-f(x)=$
$\frac{f(x+h)-f(x)}{h}=$
$\lim _{h \rightarrow 0} \frac{f\left(x^{h}+h\right)-f(x)}{h}=$

Newton Rhapson

$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
If x_{n} is an approximate solution of the equation $f(x)=0$ then x_{n} is a better approximation.

Show that $1-3 x-x^{3}=0$ has a real root between 0 and 1.
$f(x)=1-3 x-x^{3}$
$f(0)=1-3(0)-(0)^{3}=1$
$f(1)=1-3(1)-(1)^{3}=-3$
Since $f(x)$ changes sign between 0 and 1 , the graph cross the x axis and therefore a root lies between 0 and 1.

Starting with $x_{1}=0$ as a first approximation of $1-3 x-x^{3}=0$, use Newton-Rhapson to find x_{2}, the second approximation.
$f(x)=1-3 x-x^{3}$
$f(0)=1-3(0)-(0)^{3}=1$
$f^{\prime}(x)=-3-3 x^{2}$
$f^{\prime}(0)=-3-3(0)^{2}=-3$
$x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}(x)_{1}}$
$x_{2}=0-\frac{1}{-3}$
$x_{2}=\frac{1}{3}$
We could use this again with our formula to find x_{3}

Rates of Change

$\frac{d y}{d x}$ is called the 'rate of change of y with respect to x^{\prime}.
It shows how changes in y are related to changes in x.
$\frac{d y}{d x}=5$, then y is increasing 5 times as fast
as x increases

Distance, Velocity \& Acceleration

A particle moving along a straight line such that, after t seconds, the distance moved, s metres, is given by
$s=t^{3}-9 t^{2}+15 t-3$
$\frac{d s}{d t}=$ velocity
$\frac{d^{2} s}{d t^{2}}=$ acceleration

Related Rates of Change

The radius of a circle increases at $4 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of the area when the radius is 5 cm .
Radius increases at $4 \mathrm{~cm} / \mathrm{s}$. Therefore $\frac{d r}{d t}=4$ and asked to find $\frac{d A}{d t}$ when $r=5$.
$\frac{d A}{d t}=\frac{d r}{d t} \times \frac{d A}{d r}$
We need to find $\frac{d A}{d r}$
Well $A=\pi r^{2}$
therefore $\frac{d A}{d r}=2 \pi$
$\frac{d A}{d t}=4 \times 2 \pi r$
$\frac{d A}{d t}=8 \pi r$
at $t=5$
$\frac{d A}{d t}=40 \pi$

