Geometry — What do you need to know?

Constructions:

- 1.* Bisector of a given angle.
- 2.* Perpendicular bisector of a segment.
- 3.* Line perpendicular to a given line, l, through a point not on l.
- 4.* Line perpendicular to a given line, l, through a point on l.
- 5.* Line parallel to a given line through a given point.
- 6.* Division of a segment into two or three equal segments.
- 7.* Division of a segment into any number of equal segments.
- 8.* Line segment of given length on given ray.
- 9.* Angle of given number of degrees with a given ray as one arm.
- 10.* Triangle, given lengths of three sides.
- 11.* Triangle, given SAS data.
- 12.* Triangle, given ASA data.
- 13.* Right-angled triangle, given length of hypotenuse and one other side.
- 14.* Right-angled triangle, given length of hypotenuse and one other angle.
- 15.* Rectangle, given side lengths.
- 16. Circumcentre and circumcircle of a given triangle.
- 17. Incentre and incircle of given triangle.
- 18. Angle of 60° , without protractor or set square.
- 19. Tangent to a given circle at a point on the circle.
- 20. Parallelogram given the lengths of the sides and the measure of the angles.
- 21. Centroid of a triangle.
- 22.* Orthocentre of triangle.

Theorems:

- **Theorem 11** If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal.
- **Theorem 12** Let $\triangle ABC$ be a triangle. If a line *l* is parallel to *BC* and cuts [*AB*] in the ratio s : t, then it also cuts [*AC*] in the same ratio.
- **Theorem 13** If two triangles $\triangle ABC$ and $\triangle A'B'C'$ are similar, then their sides are proportional, in order:

$$\frac{|AB|}{|A'B'|} = \frac{|BC|}{|B'C'|} = \frac{|CA|}{|C'A'|}$$

Theorems

Theorem 11 If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal Suppose $AD \parallel BE \parallel CF$ and |AB| = |BC|. Prove that |DE| = |EF|.

But

|AE'| = |DE| and |F'E'| = |FE| by Theorem 9

Hence |DE| = |EF|

Theorem 12 Let $\triangle ABC$ be a triangle. If a line *l* is parallel to *BC* and cuts [*AB*] in the ratio m : n, then it also cuts [*AC*] in the same ratio

Let ℓ cut [AB] in D in the ratio m : n with natural numbers m and n. Thus there are points

 $D_0 = B, D_1, D_2, \dots, D_{m-1}, D_m = D, D_{m+1}, \dots, D_{m+n-1}, D_{m+n} = A$

equally spaced along [BA]. This means that

$$|D_0 D_1| = |D_1 D_2| = \cdots |D_{m+n-1} D_{m+n}|$$

Draw lines D_1E_1, D_2E_2, \ldots par allel to BC with $E_1, E_2 \ldots$ on [AC].

Then all the segments

 $[CE_1], [E_1E_2], [E_2E_3], \dots, [E_{m+n-1}A]$

have the same length, by Theorem 11.

The Axiom of Parallels tells us that $E_m = E$ is the point where ℓ cuts [AC]. Hence E divides [CA] in the ratio m : n **Theorem 13** If two triangles $\triangle ABC$ and $\triangle A'B'C'$ are similar, then their sides are proportional, in order:

Suppose that $|A'B'| \leq |AB|$. Pick B'' on [AB] with |AB''| = |A'B'|, and C'' on [AC] with |AC''| = |A'C'|. Then

$\triangle AB''C''$	is congruent to	$\triangle A'B'C'$	[SAS]
$\Rightarrow \angle AB''C'' $	=	$\mid \angle ABC$	
$\Rightarrow B''C''$		BC	Corresponding Angles
$\Rightarrow \frac{ A'B' }{ A'C' }$	=	$\frac{ AB'' }{ AC'' }$	Choice of B'', C''
	=	$\frac{ AB }{ AC }$	Theorem 12
$\Rightarrow \frac{ AC }{ A'C' }$	=	$\frac{ AB }{ A'B' }$	
Similarly $\frac{ BC }{ B'C' } = \frac{ AB }{ A'B' }$			

Example — Leaving Certificate 2010 Q3

(a) Construct the incircle of the triangle ABC below using only a compass and straight edge. Show all construction lines clearly.

Leaving Certificate Help Desk 2011/12 :- Geometry & Trigonometry

Solution

With the compass at A mark equal segments, [AD] and [AE]With the compass at E and D draw equal arcs Draw the bisector of $\angle BAC$

Similarly, bisect $\angle CBA$ Find F, the point of intersection of the angle bisectors Draw $[FG] \perp [BC]$ With F as centre draw a circle with radius |FG|

Example — Leaving Certificate 2010 Q3

(b) An equilateral triangle has sides of length 2 units. Find the area of its incircle.

Solution

Since $\triangle ABC$ is equilateral the incentre and the circumcentre coincide. Hence, DE bisects [BC].

$$\tan 30^{\circ} = \frac{7}{1}$$
$$= \frac{1}{\sqrt{3}}$$
$$\Rightarrow r = \frac{1}{\sqrt{3}}$$
$$A = \pi r^{2}$$
$$= \frac{\pi}{3}$$

Example — Leaving Certificate 2010 Q9(b)

Roofs of buildings are often supported by frameworks of timber called roof trusses.

A quantity surveyor needs to find the total length of timber needed in order to make the triangular truss shown below.

The length of [AC] is 6 metres, and the pitch of the roof is 35°, as shown. |AD| = |DE| = |EC| and |AF| = |FB| = |BG| = |GC|.

(i) Calculate the length of [AB], in metres, correct to two decimal places.

Solution

$$|AH| = 3 \text{ m}$$

$$\cos 35^{\circ} = \frac{3}{|AB|}$$

$$\Rightarrow |AB| = \frac{3}{\cos 35^{\circ}}$$

$$\approx 3.66232$$

$$\Rightarrow |AB| = 3.66 \text{ m (to 2 decimal places)}$$

(ii) Calculate the total length of timber required to make the truss.

Solution

$$\begin{split} |FD|^2 &= 1.83^2 + 2^2 - 2 \times 1.83 \times 2 \times \cos 35^\circ \\ &= 1.352707 \\ \Rightarrow |FD| &= 1.163 \text{ m} \\ \\ |BD|^2 &= 2^2 + 3.66^2 - 2 \times 2 \times 3.66 \times \cos 35^\circ \\ &= 5.403214 \\ \Rightarrow |BD| &= 2.325 \text{ m} \\ \end{split}$$
Total length $= 6 + 2 \times 3.662 + 2 \times 1.163 + 2 \times 2.325 \\ &= 20.3 \text{ m} \end{split}$

Example — 2011 Question 4

Two triangles are drawn on a square grid as shown. The points P, Q, R, X and Z are on vertices of the grid, and the point Y lies on [PR]. The triangle PQR is an enlargement of the triangle XYZ.

- (a) Calculate the scale factor of the enlargement, showing your work.
- (b) By construction, or otherwise, locate the centre of the enlargement on the diagram above.
- (c) Calculate |YR| in grid units.

Solution

(a) Calculate the scale factor of the enlargement, showing your work.

$$\frac{PR|}{XZ|} = \frac{6}{4}$$
$$= \frac{3}{2}$$

- (b) See diagram.
- (c) Calculate |YR| in grid units.

$$|Y'Z| = \frac{2}{3}|Q'R|$$
$$= \frac{2}{3} \times 4$$
$$= \frac{8}{3}$$
$$\Rightarrow |YR| = \frac{8}{3} - 1$$
$$= \frac{5}{3}$$

Example — 2011 Question 6

In the diagram, P_1Q_1, P_2Q_2 and P_3Q_3 are parallel and so also are Q_1P_2 and Q_2P_3 . Prove that

$$|P_1Q_1| \times |P_3Q_3| = |P_2Q_2|^2$$

Solution

Example — 2011 Question 7(c)

Scientists use information about seismic waves from earthquakes to find out about the internal structure of the earth.

The diagram below represents a circular cross-section of the earth. The dashed curve represents the path of a seismic wave travelling through the earth from an earthquake near the surface at A to a monitoring station at B. The radius of the earth is 6.4 units and the path of this wave is a circular arc of radius 29.1 units, where 1 unit = 1000 km. Based on information from other stations, it is known that this particular path just touches the earths core. The angle AOB measures 104° , where O is the centre of the earth.

Find the radius of the earth's core.

Leaving Certificate Help Desk 2011/12 :- Geometry & Trigonometry

Solution

$$|AE| = 6.4 \sin 52^{\circ}$$

= 5.04
$$|OE| = 6.4 \cos 52^{\circ}$$

= 3.94
$$|CE| = \sqrt{29.1^2 - 5.04^2}$$

= 28.66
$$|DE| = 29.1 - 28.66$$

= 0.44
$$|OD| = 3.94 - 0.44$$

= 3.5 units (or 3500 km)

Example — Project Maths Sample Paper 2012 Question 6

ABC is a triangle. D is the point on BC such that $AD \perp BC$. E is the point on AC such that $BE \perp AC$. AD and BE intersect at O. Prove that $|\angle DOC| = |\angle DEC|$.

Solution

$$\begin{aligned} |\angle ADC| &= 90^{\circ} \\ |\angle OEC| &= 90^{\circ} \\ \Rightarrow |\angle ADC| + |\angle OEC| &= 180^{\circ} \end{aligned}$$

 $\Rightarrow DOEC$ is a cyclic quadrilateral.

[DC] is a chord of a circle passing through the points D, O, E and C.

 $\Rightarrow \angle DOC$ and $\angle DEC$ are angles on the same arc

=

 $\Rightarrow |\angle DOC| = |\angle DEC|.$

Example — Project Maths Sample Paper 2012 Question 8

Anne is having a new front gate made and has decided on the design below.

The gate is 2 metres wide and 1.5 metres high. The horizontal bars are 0.5 metres apart.

- (i) Calculate the common length of the bars [AF] and [DE], in metres, correct to three decimal places.
- (ii) In order to secure the bar [AF] to [DE], the manufacturer needs to know
 - the measure of the angle EGF, and
 - the common distance |AG| = |DG|

Find these measures. Give the angle correct to the nearest degree and the length correct to three decimal places.

Solution

(i) Calculate the common length of the bars [AF] and [DE], in metres, correct to three decimal places.

$$|DE|^2 = 2^2 + 1^2$$

= 5
$$\Rightarrow |DE| = \sqrt{5}$$

= 2.236067
$$\approx 2.236$$

= |AF|

- (ii) In order to secure the bar [AF] to [DE], the manufacturer needs to know
 - the measure of the angle EGF

 $\tan \angle DEC = 2$ $\Rightarrow \angle DEC = 63.4349^{\circ}$ $= \angle AFB$ $\Rightarrow \angle EGF = 180^{\circ} - 126.8698^{\circ}$ $= 53.1302^{\circ}$ $= 53^{\circ} \text{ to the nearest degree}$

A

- (ii) In order to secure the bar [AF] to [DE], the manufacturer needs to know
 - the common distance |AG| = |DG|

Let |AG| = |DG| = x, then $|AD|^2 = x^2 + x^2 - 2x^2 \cos 53^\circ$ $\Rightarrow 4 = 2x^2 - 1.20363x^2$ $0.79637x^2 = 4$ $\Rightarrow x^2 = 5.02279$ $\Rightarrow |AG| = |DG| = 2.241$ to three decimal places

