Geometry - What do you need to know?

Constructions:
1.* Bisector of a given angle.
2.* Perpendicular bisector of a segment.
3.* Line perpendicular to a given line, l, through a point not on l.
4.* Line perpendicular to a given line, l, through a point on l.
5.* Line parallel to a given line through a given point.
6.* Division of a segment into two or three equal segments.
7.* Division of a segment into any number of equal segments.
8.* Line segment of given length on given ray.
9.* Angle of given number of degrees with a given ray as one arm.
10.* Triangle, given lengths of three sides.
11.* Triangle, given SAS data.
12.* Triangle, given ASA data.
13.* Right-angled triangle, given length of hypotenuse and one other side.
14.* Right-angled triangle, given length of hypotenuse and one other angle.
15.* Rectangle, given side lengths.
16. Circumcentre and circumcircle of a given triangle.
17. Incentre and incircle of given triangle.
18. Angle of 60°, without protractor or set square.
19. Tangent to a given circle at a point on the circle.
20. Parallelogram given the lengths of the sides and the measure of the angles.
21. Centroid of a triangle.
22.* Orthocentre of triangle.

Theorems:
Theorem 11 If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal.
Theorem 12 Let $\triangle A B C$ be a triangle. If a line l is parallel to $B C$ and cuts $[A B]$ in the ratio $s: t$, then it also cuts $[A C]$ in the same ratio.
Theorem 13 If two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are similar, then their sides are proportional, in order:

$$
\frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}=\frac{|B C|}{\left|B^{\prime} C^{\prime}\right|}=\frac{|C A|}{\left|C^{\prime} A^{\prime}\right|}
$$

Theorems

Theorem 11 If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal
Suppose $A D\|B E\| C F$ and $|A B|=|B C|$. Prove that $|D E|=|E F|$.

$$
\begin{array}{rccr}
\left|B^{\prime} F^{\prime}\right| & = & |B C| & \text { Theorem 9 } \\
& = & |A B| & \text { by Assumption } \\
\left|\angle B A E^{\prime}\right| & = & \left|\angle E^{\prime} F^{\prime} B^{\prime}\right| & \text { Alternate angles } \\
\left|\angle A E^{\prime} B\right| & = & \left|\angle F^{\prime} E^{\prime} B^{\prime}\right| & \text { Vertically Opposite Angles } \\
\Rightarrow \triangle A B E^{\prime} & \text { is congruent to } & \triangle F^{\prime} B^{\prime} E^{\prime} & \text { ASA } \\
\Rightarrow\left|A E^{\prime}\right| & = & \left|F^{\prime} E^{\prime}\right| &
\end{array}
$$

But

$$
\left|A E^{\prime}\right|=|D E| \text { and }\left|F^{\prime} E^{\prime}\right|=|F E| \text { by Theorem } 9
$$

Hence $|D E|=|E F|$
Theorem 12 Let $\triangle A B C$ be a triangle. If a line l is parallel to $B C$ and cuts $[A B]$ in the ratio $m: n$, then it also cuts $[A C]$ in the same ratio

Let ℓ cut $[A B]$ in D in the ratio $m: n$ with natural numbers m and n. Thus there are points

$$
D_{0}=B, D_{1}, D_{2}, \ldots, D_{m-1}, D_{m}=D, D_{m+1}, \ldots, D_{m+n-1}, D_{m+n}=A
$$

equally spaced along $[B A]$. This means that

$$
\left|D_{0} D_{1}\right|=\left|D_{1} D_{2}\right|=\cdots\left|D_{m+n-1} D_{m+n}\right|
$$

Draw lines $D_{1} E_{1}, D_{2} E_{2}, \ldots$ par allel to $B C$ with $E_{1}, E_{2} \ldots$ on $[A C]$.

Then all the segments

$$
\left[C E_{1}\right],\left[E_{1} E_{2}\right],\left[E_{2} E_{3}\right], \ldots,\left[E_{m+n-1} A\right]
$$

have the same length, by Theorem 11.
The Axiom of Parallels tells us that $E_{m}=E$ is the point where ℓ cuts $[A C]$.
Hence E divides $[C A]$ in the ratio $m: n$

Theorem 13 If two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are similar, then their sides are proportional, in order:

$$
\frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}=\frac{|B C|}{\left|B^{\prime} C^{\prime}\right|}=\frac{|C A|}{\left|C^{\prime} A^{\prime}\right|}
$$

Suppose that $\left|A^{\prime} B^{\prime}\right| \leq|A B|$. Pick $B^{\prime \prime}$ on $[A B]$ with $\left|A B^{\prime \prime}\right|=\left|A^{\prime} B^{\prime}\right|$, and $C^{\prime \prime}$ on $[A C]$ with $\left|A C^{\prime \prime}\right|=\left|A^{\prime} C^{\prime}\right|$. Then

$$
\begin{array}{cccr}
\triangle A B^{\prime \prime} C^{\prime \prime} & \text { is congruent to } & \triangle A^{\prime} B^{\prime} C^{\prime} & \text { [SAS] } \\
\Rightarrow\left|\angle A B^{\prime \prime} C^{\prime \prime}\right| & = & \mid \angle A B C & \\
\Rightarrow B^{\prime \prime} C^{\prime \prime} & \| & B C & \text { Corresponding Angles } \\
\Rightarrow \frac{\left|A^{\prime} B^{\prime}\right|}{\left|A^{\prime} C^{\prime}\right|} & = & \frac{\left|A B^{\prime \prime}\right|}{\left|A C^{\prime \prime \prime}\right|} & \text { Choice of } B^{\prime \prime}, C^{\prime \prime} \\
\Rightarrow \frac{|A C|}{\left|A^{\prime} C^{\prime}\right|} & = & \frac{A B \mid}{|A C|} & \text { Theorem 12 } \\
\hline A C \mid &
\end{array}
$$

Similarly $\frac{|B C|}{\left|B^{\prime} C^{\prime}\right|}=\frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}$

Example - Leaving Certificate 2010 Q3

(a) Construct the incircle of the triangle $A B C$ below using only a compass and straight edge. Show all construction lines clearly.

Solution

With the compass at A mark equal segments, $[A D]$ and $[A E]$
With the compass at E and D
draw equal arcs
Draw the bisector of $\angle B A C$
Similarly, bisect $\angle C B A$
Find F, the point of intersection of the angle bisectors
Draw $[F G] \perp[B C]$
With F as centre draw a circle with radius $|F G|$

Example - Leaving Certificate 2010 Q3

(b) An equilateral triangle has sides of length 2 units. Find the area of its incircle.

Solution

Since $\triangle A B C$ is equilateral the incentre and the
 circumcentre coincide. Hence, $D E$ bisects $[B C]$.

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{r}{1} \\
& =\frac{1}{\sqrt{3}} \\
\Rightarrow r & =\frac{1}{\sqrt{3}} \\
A & =\pi r^{2} \\
& =\frac{\pi}{3}
\end{aligned}
$$

Example - Leaving Certificate 2010 Q9(b)

Roofs of buildings are often supported by frameworks of timber called roof trusses.
A quantity surveyor needs to find the total length of timber needed in order to make the triangular truss shown below.

The length of [AC] is 6 metres, and the pitch of the roof is 35°, as shown. $|A D|=|D E|=|E C|$ and $|A F|=|F B|=|B G|=|G C|$.
(i) Calculate the length of $[A B]$, in metres, correct to two decimal places.

Solution

$$
\begin{aligned}
|A H| & =3 \mathrm{~m} \\
\cos 35^{\circ} & =\frac{3}{|A B|} \\
\Rightarrow|A B| & =\frac{3}{\cos 35^{\circ}} \\
& \approx 3.66232 \\
\Rightarrow|A B| & =3.66 \mathrm{~m} \text { (to } 2 \text { decimal places) }
\end{aligned}
$$

(ii) Calculate the total length of timber required to make the truss.

Solution

$$
\begin{aligned}
|F D|^{2} & =1.83^{2}+2^{2}-2 \times 1.83 \times 2 \times \cos 35^{\circ} \\
& =1.352707 \\
\Rightarrow|F D| & =1.163 \mathrm{~m} \\
|B D|^{2} & =2^{2}+3.66^{2}-2 \times 2 \times 3.66 \times \cos 35^{\circ} \\
& =5.403214 \\
\Rightarrow|B D| & =2.325 \mathrm{~m} \\
\text { Total length } & =6+2 \times 3.662+2 \times 1.163+2 \times 2.325 \\
& =20.3 \mathrm{~m}
\end{aligned}
$$

Example - 2011 Question 4

Two triangles are drawn on a square grid as shown. The points P, Q, R, X and Z are on vertices of the grid, and the point Y lies on $[P R]$. The triangle $P Q R$ is an enlargement of the triangle $X Y Z$.
(a) Calculate the scale factor of the enlargement, showing your work.
(b) By construction, or otherwise, locate the centre of the enlargement on the diagram above.
(c) Calculate $|Y R|$ in grid units.

Solution

(a) Calculate the scale factor of the enlargement, showing your work.

$$
\begin{aligned}
\frac{|P R|}{|X Z|} & =\frac{6}{4} \\
& =\frac{3}{2}
\end{aligned}
$$

(b) See diagram.

(c) Calculate $|Y R|$ in grid units.

$$
\begin{aligned}
\left|Y^{\prime} Z\right| & =\frac{2}{3}\left|Q^{\prime} R\right| \\
& =\frac{2}{3} \times 4 \\
& =\frac{8}{3} \\
\Rightarrow|Y R| & =\frac{8}{3}-1 \\
& =\frac{5}{3}
\end{aligned}
$$

Example - 2011 Question 6

In the diagram, $P_{1} Q_{1}, P_{2} Q_{2}$ and $P_{3} Q_{3}$ are parallel and so also are $Q_{1} P_{2}$ and $Q_{2} P_{3}$. Prove that

$$
\left|P_{1} Q_{1}\right| \times\left|P_{3} Q_{3}\right|=\left|P_{2} Q_{2}\right|^{2}
$$

Solution

$$
\begin{aligned}
\frac{\left|O P_{3}\right|}{\left|O P_{2}\right|} & =\frac{\left|O Q_{2}\right|}{\left|O Q_{1}\right|} \quad\left(P_{3} Q_{2} \| P_{2} Q_{1}\right) \\
\frac{\left|O P_{2}\right|}{\left|O P_{1}\right|} & =\frac{\left|O Q_{2}\right|}{\left|O Q_{1}\right|} \quad\left(P_{2} Q_{2} \| P_{1} Q_{1}\right) \\
\Rightarrow \frac{\left|O P_{3}\right|}{\left|O P_{2}\right|} & =\frac{\left|O P_{2}\right|}{\left|O P_{1}\right|} \\
\frac{\left|O P_{2}\right|}{\left|O P_{1}\right|} & =\frac{\left|P_{2} Q_{2}\right|}{\left|P_{1} Q_{1}\right|} \quad \text { (Similar triangles) } \\
\frac{\left|O P_{3}\right|}{\left|O P_{2}\right|} & =\frac{\left|P_{3} Q_{3}\right|}{\left|P_{2} Q_{2}\right|} \quad \text { (Similar triangles) } \\
\Rightarrow \frac{\left|P_{2} Q_{2}\right|}{\left|P_{1} Q_{1}\right|} & =\frac{\left|P_{3} Q_{3}\right|}{\left|P_{2} Q_{2}\right|} \\
\Rightarrow\left|P_{1} Q_{1}\right| \times\left|P_{3} Q_{3}\right| & =\left|P_{2} Q_{2}\right|^{2}
\end{aligned}
$$

Example - 2011 Question 7(c)

Scientists use information about seismic waves from earthquakes to find out about the internal structure of the earth.

The diagram below represents a circular cross-section of the earth. The dashed curve represents the path of a seismic wave travelling through the earth from an earthquake near the surface at A to a monitoring station at B. The radius of the earth is 6.4 units and the path of this wave is a circular arc of radius 29.1 units, where 1 unit $=1000 \mathrm{~km}$. Based on information from other stations, it is known that this particular path just touches the earths core. The angle $A O B$ measures 104°, where O is the centre of the earth.
Find the radius of the earth's core.

Solution

$$
\begin{aligned}
|A E| & =6.4 \sin 52^{\circ} \\
& =5.04
\end{aligned}
$$

$$
|O E|=6.4 \cos 52^{\circ}
$$

$$
=3.94
$$

$$
|C E|=\sqrt{29.1^{2}-5.04^{2}}
$$

$$
=28.66
$$

$$
|D E|=29.1-28.66
$$

$$
=0.44
$$

$$
|O D|=3.94-0.44
$$

$$
=3.5 \text { units }(\text { or } 3500 \mathrm{~km})
$$

Example - Project Maths Sample Paper 2012 Question 6

$A B C$ is a triangle.
D is the point on $B C$ such that $A D \perp B C$.
E is the point on $A C$ such that $B E \perp A C$.
$A D$ and $B E$ intersect at O.
Prove that $|\angle D O C|=|\angle D E C|$.

Solution

$$
\begin{aligned}
|\angle A D C| & =90^{\circ} \\
|\angle O E C| & =90^{\circ} \\
\Rightarrow|\angle A D C|+|\angle O E C| & =180^{\circ}
\end{aligned}
$$

$\Rightarrow D O E C$ is a cyclic quadrilateral.
$[D C]$ is a chord of a circle passing through the points D, O, E and C.
$\Rightarrow \angle D O C$ and $\angle D E C$ are angles on the same arc
$\Rightarrow|\angle D O C|=|\angle D E C|$.

Example — Project Maths Sample Paper 2012 Question 8

Anne is having a new front gate made and has decided on the design below.

The gate is 2 metres wide and 1.5 metres high. The horizontal bars are 0.5 metres apart.
(i) Calculate the common length of the bars $[A F]$ and $[D E]$, in metres, correct to three decimal places.
(ii) In order to secure the bar $[A F]$ to $[D E]$, the manufacturer needs to know

- the measure of the angle $E G F$, and
- the common distance $|A G|=|D G|$

Find these measures. Give the angle correct to the nearest degree and the length correct to three decimal places.

Solution

(i) Calculate the common length of the bars $[A F]$ and $[D E]$, in metres, correct to three decimal places.

$$
\begin{aligned}
|D E|^{2} & =2^{2}+1^{2} \\
& =5 \\
\Rightarrow|D E| & =\sqrt{5} \\
& =2.236067 \\
& \approx 2.236 \\
& =|A F|
\end{aligned}
$$

(ii) In order to secure the bar $[A F]$ to $[D E]$, the manufacturer needs to know

- the measure of the angle $E G F$

$$
\begin{aligned}
\tan \angle D E C & =2 \\
\Rightarrow \angle D E C & =63.4349^{\circ} \\
& =\angle A F B \\
\Rightarrow \angle E G F & =180^{\circ}-126.8698^{\circ} \\
& =53.1302^{\circ} \\
& =53^{\circ} \text { to the nearest degree }
\end{aligned}
$$

(ii) In order to secure the bar $[A F]$ to $[D E]$, the manufacturer needs to know

- the common distance $|A G|=|D G|$

Let $|A G|=|D G|=x$, then

$$
\begin{aligned}
|A D|^{2} & =x^{2}+x^{2}-2 x^{2} \cos 53^{\circ} \\
\Rightarrow 4 & =2 x^{2}-1.20363 x^{2} \\
0.79637 x^{2} & =4 \\
\Rightarrow x^{2} & =5.02279 \\
\Rightarrow|A G|=|D G| & =2.241 \text { to three decimal places }
\end{aligned}
$$

