A function is a rule which changes one number into another. Ouestions involving functions involve replacing the x variable with numbers.

Linear

A linear function $f(x)=2 x+1$ will give you a straight line.
It will have no turning point

A cubic function $f(x)=2 x^{3}-5 x^{2}-4 x+3$ will give a curve with more than one turning point.

Quadratic

$$
y=a x^{2}+b x+c
$$

Here, a is positive.

$y=a x^{2}+b x+c$
Here, a is negative.

A quadratic function $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}+5 \mathrm{x}+4$ will give a curve with only one turning point.

Exponential

An exponential function contains the x in the power.

Differentiation and Graphs

$\frac{d y}{d x}=$ slope of the tangent to a curve at any point on the curve We can then use this slope and a point to find the equation of a tangent
$\frac{d y}{d x}$ can be used to determine if slope increasing or decreasing.
Positive $=$ increasing \quad Negative $=$ decreasing
To find the max and min points of a curve we find $\frac{d y}{d x}$ and let equal to 0 .

To find the points of inflection we find $\frac{d^{2} y}{d x^{2}}$ and let equal to 0 .

The roots of a function are the values of x where the curve/ line crosses the x -axis.

Graphing the Cosine Function $(y=\cos \theta)$

Graphing the Tangent Function $(y=\tan \theta)$

[^0]There are asymptotes at $\theta= \pm \frac{\pi}{2}, 4 \frac{3 \pi}{2}$
(at all odd mutiples of $\frac{1}{2}$ radians).

Period and Range

The period is the width of the pattern $=6$ units
The range is the highest and lowest y value $[-1,2]$

Plotting trigonometric functions

$$
\begin{aligned}
& f(x)=\operatorname{asin} n x \\
& g(x)=\operatorname{acos} n x \\
& \text { Range }[-a, a] \text { Period }=\frac{2 \pi}{n}
\end{aligned}
$$

If $f(x)=g(x)$ we can solve for x by drawing the two functions and identifying the x values on the graph of the points where the curves/ lines meets.

We can do it algebraically either with a simultaneous equation.

Asymptote

An asymptote $f(x)=\frac{1}{x-1}$ will give two curves on the same graph that don't intersect.

They have no turning points or points of inflection.
They are always increasing or decreasing

To Sketch Asymptotes:

Vertical Asymptote: Bottom $=0$
Horizontal Asymptote $y=\lim _{x \rightarrow \infty} f(x)$

Vertical Asymptote
 $x-1=0$
 $x=1$

Horizontal Asymptote
$\lim _{x \rightarrow \infty} \frac{1}{x-1}=0$
$y=0$

[^0]: tan $0^{\circ}=0$ so, the curve passes through the oris
 There are no maximum and minimum values.
 Period $=\pi$
 The groph repeats itself every π radians, so it is a periodic function.

