Proof By Induction

Mathematical induction is a method of mathematical proof typically used to establish that a given statement is true for all natural numbers (positive integers). It is done by proving that the **first** statement in the infinite sequence of statements is true, and then proving that if **any one** statement in the infinite sequence of statements is true, then so is the **next** one.

Comina

Divisibility Prove by induction that 8 is a factor $7^{2n+1} + 1$ for $n \in N$ **Step 1:** Show true for n = 1 $7^{2(1)+1} + 1 = 7^3 + 1 = 344$ which is divisible by 8 **Step 2:** Assume true for n = k $7^{2k+1} + 1$ is divisible by 8 **Step 3:** Prove true for n = k + 1To prove: $7^{2(k+1)+1} + 1 = 7^{2k+3} + 1$ is divisible by 8 $f(k+1) - f(k) = 7^{2k+3} + 1 - (7^{2k+1} + 1)$ $= 7^{2k} \cdot 7^3 + 1 - 7^{2k} \cdot 7^1 - 1$ $= 7^{2k}(7^3 - 7^1)$ $= 7^{2k}(336)$ which is divisible by 8 The proposition is true for n = 1. If the proposition is true for n = k, then it will be true for n = k + 1. Therefore by induction it is true for all $n \in N$

Series
Prove by induction that the sum of the first n natural numbers $\sum n = \frac{n(n+1)}{2}$ for $n \in N$.
Step 1: Show true for $n = 1$
$1 = \frac{1(1+1)}{2}$ $1 = 1$ Step 2: Accuracy for $n = k$
step 2: Assume true for $n = k$ k(k + 1)
$1 + 2 + 3 + \dots + k = \frac{n(n+1)}{2}$
Step 3: Prove true for $n = k + 1$ To prove: (k + 1)(k + 2)
$1 + 2 + 3 + \dots + k + k + 1 = \frac{(k+1)(k+2)}{2}$
Proof:
$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$ Assumption
$1 + 2 + 3 + \dots + k + k + 1 = \frac{k(k+1)}{k^2} + k + 1$
$=\frac{k^2+k}{2}+k+1$
$k^{2} + k^{2} + 2k + 2k$
$=\frac{2}{2}$
$=\frac{k^2+3k+2}{2}$
$=\frac{(k+1)(k+2)}{2}$
The proposition is true for $n = 1$. If the proposition is true for $n = k$, then it will be true for $n = k + 1$. Therefore by induction it is true for all $n \in N$

Step 1: Prove that the proposition is true for the smallest value of *n* given in the question, usually n = 1 **Step 2:** Assume the proposition is true for n=k **Step 3:** Show that the proposition is true for n=k+1**Step 4:** The proposition is true for n = 1. If the proposition is true for n = k, then it will be true for n = k + 1. Therefore by induction it is true for all $n \in N$

We use it in 3 areas: Divisibility, Series and Inequalities

Inequalities

Prove by induction that $2^n \ge n^2$ for $n \ge 4, n \in N$ **Step 1:** Show true for n = 4 $2^4 > 4^2$ **Step 2:** Assume true for n = k $2^k > k^2$ **Step 3:** Prove true for n = k + 1To prove: $2^{k+1} > (k+1)^2$ Since $2^k > k^2$ $2^k, 2 > 2k^2$ Therefore $2^{k+1} > 2k^2$ So we need to show that $2k^2 \ge (k+1)^2$ $2k^2 > k^2 + 2k + 1$ $k^2 - 2k - 1 > 0$ $k^2 - 2k + 1 - 2 \ge 0$ $(k-1)^2 - 2 \ge 0$ Which is true for k > 4 $2^{k+1} > 2k^2 > (k+1)^2$

The proposition is true for n = 1. If the proposition is true for n = k, then it will be true for n = k + 1. Therefore by induction it is true for all $n \in N$