

Mathematical induction is a method of mathematical proof typically used to establish that a given statement is true for all natural numbers (positive integers). It is done by proving that the first statement in the infinite sequence of statements is true, and then proving that if any one statement in the infinite sequence of statements is true, then so is the next one.

Step 1: Prove that the proposition is true for the smallest value of n given in the question, usually $\boldsymbol{n}=\mathbf{1}$
Step 2: Assume the proposition is true for $n=k$
Step 3: Show that the proposition is true for $n=k+1$
Step 4: The proposition is true for $n=1$. If the proposition is true for $n=k$, then it will be true for $n=k+1$. Therefore by induction it is true for all $n \in N$

We use it in 3 areas: Divisibility, Series and Inequalities

Divisibility

Prove by induction that 8 is a factor $7^{2 n+1}+1$ for $n \in N$

Step 1: Show true for $n=1$

$$
7^{2(1)+1}+1=7^{3}+1=344
$$

which is divisible by 8
Step 2: Assume true for $n=k$

$$
7^{2 k+1}+1
$$

is divisible by 8

Step 3: Prove true for $n=k+1$
To prove:

$$
7^{2(k+1)+1}+1=7^{2 k+3}+1
$$

is divisible by 8

$$
\begin{gathered}
f(k+1)-f(k)=7^{2 k+3}+1-\left(7^{2 k+1}+1\right) \\
=7^{2 k} .7^{3}+1-7^{2 k} \cdot 7^{1}-1 \\
=7^{2 k}\left(7^{3}-7^{1}\right) \\
=7^{2 k}(336)
\end{gathered}
$$

which is divisible by 8
The proposition is true for $n=1$. If the proposition is true for $n=k$, then it will be true for $n=k+1$.
Therefore by induction it is true for all $n \in N$

Series

Prove by induction that the sum of the first n natural numbers $\sum n=\frac{n(n+1)}{2}$ for $n \in N$.

Step 1: Show true for $n=1$

$$
\begin{gathered}
1=\frac{1(1+1)}{2} \\
1=1
\end{gathered}
$$

Step 2: Assume true for $n=k$

$$
1+2+3+\cdots+k=\frac{k(k+1)}{2}
$$

Step 3: Prove true for $n=k+1$
To prove:

$$
1+2+3+\cdots+k+k+1=\frac{(k+1)(k+2)}{2}
$$

Proof:

$$
\begin{aligned}
& 1+2+3+\cdots+k=\frac{k(k+1)}{2} \text { Assumption } \\
& 1+2+3+\cdots+k+k+1=\frac{k(k+1)}{2}+k+1 \\
&=\frac{k^{2}+k}{2}+k+1 \\
&=\frac{k^{2}+k+2 k+2}{2} \\
&=\frac{k^{2}+3 k+2}{2} \\
&=\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

The proposition is true for $n=1$. If the proposition is true for $n=k$, then it will be true for $n=k+1$.
Therefore by induction it is true for all $n \in N$

Inequalities

Prove by induction that $2^{n} \geq n^{2}$ for $n \geq 4, n \in N$
Step 1: Show true for $n=4$

$$
2^{4} \geq 4^{2}
$$

Step 2: Assume true for $n=k$

$$
2^{k} \geq k^{2}
$$

Step 3: Prove true for $n=k+1$
To prove:

$$
2^{k+1} \geq(k+1)^{2}
$$

Since $2^{k} \geq k^{2}$
$2^{k} .2 \geq 2 k^{2}$
Therefore
$2^{k+1} \geq 2 k^{2}$
So we need to show that $2 k^{2} \geq(k+1)^{2}$

$$
\begin{gathered}
2 k^{2} \geq k^{2}+2 k+1 \\
k^{2}-2 k-1 \geq 0 \\
k^{2}-2 k+1-2 \geq 0 \\
(k-1)^{2}-2 \geq 0
\end{gathered}
$$

Which is true for $k \geq 4$

$$
2^{k+1} \geq 2 k^{2} \geq(k+1)^{2}
$$

The proposition is true for $n=1$. If the proposition is true for $n=k$, then it will be true for $n=k+1$.
Therefore by induction it is true for all $n \in N$

