The angles in any triangle add up to 180°.

Given: A triangle with angles $\angle 1$, $\angle 2$ and $\angle 3$.

To prove: $|\angle 1| + |\angle 2| + |\angle 3| = 180^{\circ}$.

Statement	Reason
∠4 + ∠1 + ∠5 = 180°	Straight angle
∠2 = ∠4	Alternate
∠3 = ∠5	Alternate
⇒ ∠4 + ∠1 + ∠5 = ∠2 + ∠1 + ∠3	
⇒ ∠1 + ∠2 + ∠3 = 180°	
Q.E.D.	

Each exterior angle of a triangle is equal to the sum of the interior remote angles.

Given: A triangle with interior angles $\angle 1$, $\angle 2$ and $\angle 3$, and an exterior angle $\angle 4$.

To prove: $|\angle 1| + |\angle 2| = |\angle 4|$.

Statement	Reason
∠3 + ∠4 = 180°	Straight angle
∠1 + ∠2 + ∠3 = 180°	Angles in a triangle
⇒ ∠1 + ∠2 + ∠3 = ∠3 + ∠4	Both = 180°
⇒ ∠1 + ∠2 = ∠4	Subtracting ∠3
Q.E.D.	

In a parallelogram, opposite sides are equal and opposite angles are equal.

Given: A parallelogram ABCD.

To prove:

- (i) |AB| = |CD| and |BC| = |AD| (opposite sides are equal)
- (ii) $|\angle ABC| = |\angle ADC|$, $|\angle BAD| = |\angle BCD|$ (opposite angles are equal)

Construction: Draw the diagonal [AC]. **Proof:**

Statement	Reason
$ \angle BCA = \angle CAD $	Alternate
AC = AC	Common (shared)
$ \angle BAC = \angle ACD $	Alternate
$\Rightarrow \Delta BAC = \Delta ADC$	ASA
$\Rightarrow AB = CD \text{ and } BC = AD $	Corresponding sides
Also, $ \angle ABC = \angle ADC $	Corresponding angle
Similarly, $ \angle BAD = \angle BCD $	
Q.E.D.	

Theorem 14: Theorem of Pythagoras

In a right-angled triangle, the square of the hypotenuse is the sum of the squares of the other two sides.

Given: A right-angled triangle ABC with $|\angle ABC| = 90^{\circ}$.

To prove:
$$|AC|^2 = |AB|^2 + |BC|^2$$
.

Construction: Draw
$$BD \perp AC$$
.

Proof:

Step 1

Consider the triangles ABC and ADB.

$ \angle ABC = \angle ADB $	90°
$ \angle BAC = \angle BAD $	Common

Statement	Reason
$\triangle ABC$ and $\triangle ADB$ are similar.	Construction
$\Rightarrow \frac{ AC }{ AB } = \frac{ AB }{ AD }$	Theorem
$\Rightarrow AB . AB = AC . AD $	
$\Rightarrow AB ^2 = AC \cdot AD $	

∴ ∆ABC and ∆ADB are similar.

Step 2

Consider the triangles ABC and BDC.

∴ ∆ABC and ∆BDC are similar.

Step 3

$ AB ^2 + BC ^2 = AC . AD + $	AC . DC
= AC .(AD +	DC)
$\Rightarrow AB ^2 + BC ^2 = AC \cdot AC $	(Since $ AD + DC = AC $)
$ AB ^2 + BC ^2 = AC ^2$	
Q.E.D.	

Statement	Reason
ΔABC and ΔBDC are similar.	Construction
$\Rightarrow \frac{ AC }{ BC } = \frac{ BC }{ DC }$	Theorem
$\Rightarrow BC . BC = AC . DC $	
$\Rightarrow BC ^2 = AC . DC $	

The angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.

Given: A circle with centre *O* and an arc *AC*. A point *B* on the circle.

To prove: $|\angle AOC| = 2|\angle ABC|$.

Construction: Join *B* to *O* and continue to a point *D*. Label angles 1, 2, 3, 4, 5 and 6.

$$|\angle AOC| = |\angle 5| + |\angle 6|$$
$$|\angle ABC| = |\angle 2| + |\angle 3|$$

Statement	Reason
OA = OB	Radii
∠1 = ∠2	Isosceles triangle
∠5 = ∠1 + ∠2	Exterior angle
⇒ ∠5 = 2 ∠2	Since ∠1 = ∠2
Similarly, $ \angle 6 = 2 \angle 3 $	
$ \angle 5 + \angle 6 = 2 \angle 2 + 2 \angle 3 $	
$\Rightarrow \angle 5 + \angle 6 = 2(\angle 2 + \angle 3)$	
$ \angle AOC = 2 \angle ABC $	
Q.E.D.	

If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal.

Given: $AD \parallel BE \parallel CF$, as in the diagram,

with |AB| = |BC|.

To prove: |DE| = |EF|.

Construction: Draw $AE' \parallel DE$, cutting EB at E' and CF at F'.

Draw $F'B' \parallel AB$, cutting EB at B', as in the diagram.

Statement	Reason
B'F' = BC	Opposite sides in a parallelogram
= AB	By assumption
$ \angle BAE' = \angle E'F'B' $	Alternate angles
$ \angle AE'B = \angle F'E'B' $	Vertically opposite angles
∴ ∆ABE' is congruent to ∆F'B'E'	ASA
Therefore, $ AE' = F'E' $.	
But $ AE' = DE $ and $ F'E' = FE $	Opposite sides in a parallelogram
∴ DE = EF	
Q.E.D.	

Let ABC be a triangle. If a line I is parallel to BC and cuts [AB] in the ratio s: t, then it also cuts [AC] in the same ratio.

Given: A triangle *ABC* and a line *XY* parallel to *BC* which cuts [*AB*] in the ratio *s* : *t*.

To prove: |AY| : |YC| = s : t

Construction: Divide [AX] into s equal parts and [XB] into t equal parts. Through each point of division, draw a line parallel to BC.

Proof: According to Theorem 11, the parallel lines cut off segments of equal length along [AC].

Let *k* be the length of each of these equal segments.

$$\Rightarrow |AY| = sk \text{ and } |YC| = tk$$

$$\Rightarrow$$
 |AY| : |YC| = $sk : tk = s : t$

Q.E.D.

If two triangles ABC and DEF are similar, then their sides are proportional, in order:

$$\frac{|AB|}{|DE|} = \frac{|BC|}{|EF|} = \frac{|AC|}{|DF|}$$

Given: Similar triangles ABC and DEF.

To prove:
$$\frac{|AB|}{|DE|} = \frac{|BC|}{|EF|} = \frac{|AC|}{|DF|}$$

Construction: Assume triangle *DEF* is smaller than triangle *ABC*.

- Mark a point X on [AB] such that |AX| = |DE|, and mark a point Y on [AC] such that |AY| = |DF| as shown.
- Draw [XY].

Statement	Reason
ΔAXY is congruent to ΔDEF .	SAS
$\Rightarrow \angle AXY = \angle ABC $	
⇒ XY BC	Corresponding angles equal
$\Rightarrow \frac{ AB }{ AX } = \frac{ AC }{ AY }$	Theorem 12
But $ AX = DE $ and $ AY = DF $.	Construction
AB AC	
$\Rightarrow { DE } = { DF }$	
Similarly, $\frac{ BC }{ EF } = \frac{ AB }{ DE }$	
$\Rightarrow \frac{ AB }{ DE } = \frac{ BC }{ EF } = \frac{ AC }{ DF }$	
Q.E.D.	