idea of patterns and progression. You must be able to analyse and come up with a general term.

$$
\begin{aligned}
& \sum_{i}=\text { sum } \\
& \sum_{r=1}^{4} T_{r}=T_{1}+T_{2}+T_{3}+T_{4}
\end{aligned}
$$

General Sequence Notation

A sequence is a set of numbers or algebraic expressions defined by a rule.

Example

The general term of a sequence is given by $U_{n}=3 n-4$
Find $U_{1}, U_{6}, U_{n+1}-U_{n}$
For what value of n is $U_{n}=32$
$U_{n}=3 n-4$
$U_{1}=3(1)-4=3-4=-1$
$U_{6}=3(6)-4=18-4=14$
$U_{n+1}-U_{n}=3(n+1)-4-(3 n-4)$
$=3 n+3-4-3 n+4$
$=3$
$U_{n}=3 n-4$
$U_{n}=32$
$3 n-4=32$
$3 n=36$
$n=12$

Limits

The limit of a sequence is a unique number L such that T_{n}, the nth term of the sequence gets closer and closer to L for larger and larger values of n.

If a limit exists then the sequence is convergent. If it doesn't exist then the sequence is divergent.
$T_{n} \rightarrow L$ as $n \rightarrow \infty$ then $\lim _{n \rightarrow \infty} T_{n}=L$
$\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0 \quad$ for $p>0$
$\lim _{n \rightarrow \infty} \frac{2 n^{2}+15 n-1}{3 n^{2}-3 n+2}=\frac{2}{3}$
Divide everything by the highest power of n
$\lim _{n \rightarrow \infty} \frac{\frac{2 n^{2}}{n^{2}}+\frac{15 n}{n^{2}}-\frac{1}{n^{2}}}{\frac{3 n^{2}}{n^{2}}-\frac{3 n}{n^{2}}+\frac{2}{n^{2}}}$
$\lim _{n \rightarrow \infty} \frac{2+0-0}{3-0+0}$
$=\frac{2}{3}$

Convergence

A series is convergent if it has a limit A series is divergent if it does not have a limit.

State the values of x for which the series $\sum_{r=2}^{\infty}(4 x-1)^{r}$
is convergent. Then find the sum to infinity in terms of x.

$$
\begin{gathered}
\sum_{r=2}^{\infty}(4 x-1)^{r}=(4 x-1)^{2}+(4 x-1)^{3}+(4 x-1)^{4}+\cdots \\
a=(4 x-1)^{2} \\
r=4 x-1
\end{gathered}
$$

Series convergent $|r|<1$

$$
\begin{gathered}
|4 x-1|<1 \\
-1<4 x-1<1 \\
0<4 x<2 \\
0<4 x<\frac{1}{2} \\
S_{\infty}=\frac{a}{1-r} \\
S_{\infty}=\frac{(4 x-1)^{2}}{1-(4 x-1)} \\
S_{\infty}=\frac{(4 x-1)^{2}}{2-4 x)}
\end{gathered}
$$

Arithmetic Sequences and Series

$2,4,6,8, \ldots$
$a=$ first term
$d=$ common difference
$T_{n}=a+(n-1) d$
General Term
$d=T_{3}-T_{2}=T_{2}-T_{1}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Sum to \boldsymbol{n} terms

$T_{n}=S_{n}-S_{n-1}$

Prove that the sequence $T_{n}=4 n+3$ is arithmetic and find d, the common difference.
$T_{n}=4 n+3$
$T_{n+1}=4(n+1)+3$
$=4 n+4+3$
$=4 n+7$
$T_{n+1}-T_{n}=4 n+7-(4 n+3)$
$=4$
The first term of an arithmetic sequence is 7 and the common difference is -2 . Which term of the sequence is -351
$T_{n}=a+(n-1) d$
$=7+(n-1)(-2)$
$=7-2 n+2$
$=9-2 n$
$9-2 n=-351$
$360=2 n$
$80=n$

Geometric Sequences and Series

1,4,16,64 ...
$a=$ first term
$r=$ common ratio
$T_{n}=a r^{n-1}$
General Term
$r=\frac{T_{3}}{T_{2}}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

Sum to \boldsymbol{n} terms

$T_{n}=S_{n}-S_{n-1}$
$S_{\infty}=\frac{a}{1-r}$ for $|r|<1$

Sum to Infinity

The first three terms of a geometric sequence is $4,-12,36$ find a the first term andr, the common ratio.
$a=T_{1}=4$
$r=\frac{T_{2}}{T_{1}}=\frac{-12}{4}=-3$
The first three terms of a geometric sequence are $\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$ Find the S_{∞}
$a=T_{1}=\frac{1}{4}$
$r=\frac{T_{2}}{T_{1}}=\frac{\frac{1}{8}}{\frac{1}{4}}=\frac{1}{2}$
$S_{\infty}=\frac{\frac{1}{4}}{1-\frac{1}{2}}=\frac{1}{2}$

Reoccurring Sequence

Express $1.5 \dot{4} 7$ in the form $\frac{p}{q}$
$1.5 \dot{4} \dot{7}=1.54747474747 \ldots$
$=1+\frac{5}{10}+\frac{47}{1000}+\frac{47}{100000}+\cdots$
$=\frac{3}{2}\left(\frac{47}{10^{3}}+\frac{47}{10^{5}}+\cdots\right)$
$\frac{47}{10^{3}}+\frac{47}{10^{5}}+\cdots$ is an infinite geometric series
where $a=\frac{47}{100}$ and $r=\frac{1}{100}$
$1.5 \dot{4} \dot{7}=\frac{3}{2}+\frac{a}{1-r}$
$1.5 \dot{4} \dot{7}=\frac{3}{2}+\frac{\frac{47}{1000}}{1-\frac{1}{100}}$
$1.5 \dot{4} \dot{7}=\frac{3}{2}+\frac{\frac{47}{1000}}{\frac{99}{100}}$
$1.5 \dot{4} \dot{7}=\frac{3}{2}+\frac{47}{990}$
$1.5 \dot{4} \dot{7}=\frac{766}{495}$

