Sequences and Series

Sequences and series involve understanding idea of patterns and progression. You must be able to analyse and come up with a general term. $\sum_{r=1}^{5} = sum$ $\sum_{r=1}^{4} T_r = T_1 + T_2 + T_3 + T_4$

Arithmetic Sequences and Series 2, 4, 6, 8,	Geometric Sequences and Series 1,4,16,64	Reoccurring Sequence <i>Express</i> 1.547 <i>in the form</i> $\frac{p}{q}$
a = first term d = common difference	a = first term r = common ratio	$1.5\dot{4}\dot{7} = 1.54747474747$
$T_n = a + (n-1)d$ General Term	$T_n = ar^{n-1}$ General Term	$= 1 + \frac{5}{10} + \frac{47}{1000} + \frac{47}{1000000} + \cdots$
$d = T_3 - T_2 = T_2 - T_1$ $S_n = \frac{n}{2} [2a + (n-1)d]$ Sum to n terms	$r = \frac{T_3}{T_2}$	$=\frac{3}{2}\left(\frac{47}{10^3}+\frac{47}{10^5}+\cdots\right)$
$T_n = S_n - S_{n-1}$	$S_n = \frac{a(1-r^n)}{1-r}$ Sum to n terms	$\frac{47}{10^3} + \frac{47}{10^5} + \cdots$ is an infinite geometric series
	$T_n = S_n - S_{n-1}$	where $a = \frac{47}{100}$ and $r = \frac{1}{100}$
Prove that the sequence $T_n = 4n + 3$ is arithmetic and find d, the common difference.	$S_{\infty} = \frac{a}{1-r}$ for $ r < 1$ Sum to Infinity	$1.5\dot{4}\dot{7} = \frac{3}{2} + \frac{a}{1-r}$
$T_n = 4n + 3$ $T_{n+1} = 4(n + 1) + 3$ = 4n + 4 + 3 = 4n + 7	The first three terms of a geometric sequence is $4, -12,36$ find a the first term and r , the common ratio.	$1.5\dot{4}\dot{7} = \frac{3}{2} + \frac{\frac{47}{1000}}{1 - \frac{1}{1 - 1$
$ = 4n + 7 $ $ T_{n+1} - T_n = 4n + 7 - (4n + 3) $ $ = 4 $	$a = T_1 = 4$ $r = \frac{T_2}{T_1} = \frac{-12}{4} = -3$	$1 - \frac{1}{100}$ $1.5\dot{4}\dot{7} = \frac{3}{2} + \frac{\frac{47}{1000}}{99}$
The first term of an arithmetic sequence is 7 and the common difference is -2 . Which term of the sequence is -351	The first three terms of a geometric sequence $are_{\frac{1}{4}}, \frac{1}{8}, \frac{1}{16}, \dots$ Find the S_{∞} $a = T_1 = \frac{1}{4}$	$2 \frac{99}{100}$ $1.5\dot{4}\dot{7} = \frac{3}{2} + \frac{47}{990}$
$T_n = a + (n - 1)d$ = 7 + (n - 1)(-2) = 7 - 2n + 2 = 9 - 2n	$r = \frac{T_2}{T_1} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}$	$1.5\dot{4}\dot{7} = \frac{766}{495}$
= 9 - 2n 9 - 2n = -351 360 = 2n 80 = n	$S_{\infty} = \frac{\frac{1}{4}}{1 - \frac{1}{2}} = \frac{1}{2}$	