# **Sequences – Series – Patterns**



Key words

number sequence arithmetic sequence series sigma  $(\Sigma)$  geometric sequence exponential sequence geometric series recurring desimal finite difference composite function quadratic function



6th Year

**HL Maths** 

March 2013

## **Example 1**

Write down the first four terms of each of the following sequences:

(i) 
$$T_n = n^2 + n$$

(ii) 
$$T_n = 2^n - 3n$$

(i) 
$$T_n = n^2 + n$$
  
 $T_1 = (1)^2 + (1) = 2$   
 $T_2 = (2)^2 + 2 = 6$   
 $T_3 = (3)^2 + 3 = 12$   
 $T_4 = (4)^2 + 4 = 20$ 

(ii) 
$$T_{1} = 2^{n} - 3n$$
  
 $T_{1} = 2^{1} - 3(1) = -1$   
 $T_{2} = 2^{2} - 3(2) = -2$   
 $T_{3} = 2^{3} - 3(3) = -1$   
 $T_{4} = 2^{4} - 3(4) = 4$ 

#### **Example 2**

The following rectangular patterns are made from two sets of coloured tiles.



- (i) Draw the next two patterns of tiles.
- (ii) Write a number sequence for the blue tiles used in each of these patterns.
- (iii) Write a number sequence for the total number of tiles used in each of these patterns.
- (iv) Write a number sequence for the white tiles used in each of these patterns.
- (v) Write out the next 3 terms in each sequence found in (ii), (iii), (iv).



#### Exercise 4.1 —

1. Write down the next three terms of each of the following sequences:



- 2. Find the first four terms of the following sequences, given the nth term  $(T_n)$  in each case.
  - (i)  $T_n = 4n 2$
- (iv)  $T_n = (n+3)(n+1)$
- (vii)  $T_n = 2^n$

- (ii)  $T_n = (n + 1)^2$ (iii)  $T_n = n^2 - 2n$
- (v)  $T_n = n^3 1$
- (viii)  $T_n = (-3)^n$ (ix)  $T_n = n \cdot 2^n$

- (HW)
- $(vi) \quad T_n = \frac{n}{n+2}$
- (i)  $T_{n} = (n+1)^{2}$   $T_{1} = 4(1)-2 = 2$   $T_{2} = 4(2)-2 = 6$   $T_{3} = 4(3)-2 = 10$   $T_{4} = 4(4)-2 = 14$ (ii)  $T_{n} = (n+1)^{2}$   $T_{1} = (n+1)^{2} = 4$   $T_{2} = (2+1)^{2} = 9$   $T_{3} = (3+1)^{2} = 16$  $T_{4} = (4+1)^{2} = 25$

(iii) 
$$T_{n} = n^{2} - 2n$$
 (iv)  $T_{n} = (n+3)(n+1)$ 

$$T_{1} = (1)^{2} - 2(1) = -1$$

$$T_{2} = (2)^{2} - 2(2) = 0$$

$$T_{3} = (3)^{2} - 2(3) = 3$$

$$T_{4} = (4)^{2} - 2(4) = 8$$
(v)  $T_{n} = n^{3} - 1$ 
(vi)  $T_{n} = n / (n+2)$ 

(V) 
$$T_{n} = n^{3} - 1$$
 (Vi)  $T_{n} = n/(n+2)$   $T_{1} = (1)^{3} - 1 = 0$   $T_{2} = (2)^{3} - 1 = 7$   $T_{3} = 2/(2+2) = 1/2$   $T_{4} = (4)^{3} - 1 = 63$   $T_{5} = 3/(3+2) = 3/5$ 

- **2.** Find the first four terms of the following sequences, given the nth term  $(T_n)$  in each case.
  - (i)  $T_n = 4n 2$
- (iv)  $T_n = (n+3)(n+1)$
- (vii)  $T_n = 2^n$

- (ii)  $T_n = (n+1)^2$
- (v)  $T_n = n^3 1$
- (viii)  $T_n = (-3)^n$

- (iii)  $T_n = n^2 2n$
- (vi)  $T_n = \frac{n}{n+2}$
- (ix)  $T_n = n.2^n$







eg.

| T,                                     | T       | $T_3$ | Ta | 75  |      |
|----------------------------------------|---------|-------|----|-----|------|
| 2,                                     | 4,      | 6,    | 8  | ,10 | <br> |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | /\<br>+ |       |    | ノへ  |      |
| +0                                     |         | -     |    | 1   |      |

$$T_n = n^{th}$$
 term eq.  $T_3 = 6$   
 $n = n$   
 $q = T_1 = 2$   
 $d = Common difference = +2$ 

$$a = 7_1 = 2$$
  
 $d = common difference = +2$ 

$$T_{20} = ?$$
  $2 + 19(2)$   $T_{99} = ?$   $2 + 98(2)$ 

$$T_{h} = ?$$
  $T_{h} = 2 + (h-1) 2$ 

$$Tn = a + (n-1)d$$

Formula

# **Example 1**

Find the *n*th term  $(T_n)$  of the arithmetic sequence:

- and hence find (i)  $T_{20}$  (ii)  $T_{21}$  (iii)  $T_{21} T_{20}$ .

 $T_{n} = a + (n-1)d$  a = -2 d = 5.

$$T_{n} = -2 + (n-1)5$$

$$n=20$$
 (i)  $T_{20}=-7+5(20)=93$ 

(ii) 
$$T_{21} = -7 + 5(21) = 98$$

$$T_{21} - T_{20} = 5$$

**Exercise 4.2** 

- **1.** Find  $T_n$ , the *n*th term of the following arithmetic sequences. Hence find  $T_{22}$  for each sequence.
  - (i) 8, 13, 18, 23, ...
- (ii) 16, 36, 56, 76, ...
- (iii) 10, 7, 4, 1, ...



$$N=22$$
  $T_{22} = 3 + 5(22) = 113$ 

(ii) 
$$a = 1b$$
  $d = 20$ 

$$T_{n} = 1b + (h-1)20$$

$$= 1b + 20h - 20$$

$$T_{n} = 20n - 4$$

$$T_{n} = 20(22) - 4 = 436$$

### Exercise 4.2 –

- **1.** Find  $T_n$ , the *n*th term of the following arithmetic sequences. Hence find  $T_{22}$  for each sequence.
  - (i) 8, 13, 18, 23, ...

N=22

(ii) 16, 36, 56, 76, ...

a = 10 d = -3

10,7,4,1...

(iii) 10, 7, 4, 1, ...





- 3. Find the number of terms in each of the following arithmetic sequences:
  - (i) -5, -1, 3, 7, ...... 75 (ii) 2, 5, 8, 11, ...... 59
- (iii)  $-\frac{3}{2}$ , -1,  $-\frac{1}{2}$ , 0, ..... 14.

(i)



N=7



3. Find the number of terms in each of the following arithmetic sequences:

- (i) -5, -1, 3, 7, ...... 75 (ii) 2, 5, 8, 11, ...... 59
- (iii)  $-\frac{3}{2}$ , -1,  $-\frac{1}{2}$ , 0, ..... 14.

(ii)

1=?

 $T_{n} = a + (n-1)d$ 

+3



- 3. Find the number of terms in each of the following arithmetic sequences:
  - (i) -5, -1, 3, 7, ...... 75 (ii) 2, 5, 8, 11, ...... 59
- (iii)  $-\frac{3}{2}$ , -1,  $-\frac{1}{2}$ , 0, ..... 14.

(ii)

n=?

 $T_n = a + (n-1)d$ 



XZ

+3 +1

$$28 = -3 + (n-1)1$$

31 = 10-1 32 = h