Co-Ordinate Geometry – The Line

 $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Points

If we have **two points** (x_1, y_1) and (x_2, y_2) we can use formulae in the tables to find:

- Distance

- Midpoint $\begin{pmatrix} x_1+x_2\\ 2 \end{pmatrix}, \frac{y_1+y_2}{2} \end{pmatrix}$ Slope $m = \frac{y_2-y_1}{x_2-x_1}$ Equation of a line $y y_1 = m(x x_1)$

Perpendicular Distance from a Point to a Line

$$d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

Slopes

Perpendicular Slope

Turn the slope upside down and change the sign. For example if a line has a slope of $\frac{3}{5}$ the perpendicular slope is $-\frac{5}{2}$ To prove slopes perpendicular $m_1m_2 = -1$

Parallel Slope

If the lines are parallel then the slopes are equal

Angles Between Lines $\tan\theta = \pm \frac{m_1 - m_2}{1 + m_1 m_2}$

(remember: use shift on the calculator to find an angle)

 Remember For both the line and circle questions: Open the relevant formula pages in the tables. Always draw a rough sketch. Remember to sketch a line you must find two points and the easiest to find are where x = 0 and y = 0 If you need a bit from one question to do the next but don't have it, make your best guess and use them. Always show the examiner what you CAN do. 	 Transformations of the Plane Translation: A translation moves a point in straight line. Central Symmetry: Is a reflection in a point Axial Symmetry: Is a reflection in a line Axial Symmetry in the axes or central symmetry in the origin In the <i>x</i> - <i>axis</i> - change the sign of <i>y</i> In the <i>y</i> - <i>axis</i> - change the sign of <i>x</i> Central symmetry
 Graphing Lines To draw a line two points are needed. The easiest points to find are where the lines cross the x and y axis. 1. Let y = 0 and find x 2. Let x = 0 and find y 3. Plot these two points 4. Draw the line through these points 	Point of Intersection of Two LinesFind the point of intersection of the two linesK: $3x + 4y = -6$ and L: $2x - 3y = 13$ Simultaneous Equation
Lines Parallel to the Axes x = 2 is a line parallel to the $y - axis$ through 2 on the x axis y = -1 is a line parallel to the $x - axis$ through -1 on the y axis	Parallel LinesIf $ax + by + c = 0$ is a line then a parallel line can be written $ax + by + k = 0$ A perpendicular line can be written $bx - ay + k = 0$
Coordinates of a Centroid $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$ Circumcentre Point of intersection of the perpendicular bisectors of the sides.Orthocentre Is the point of intersection of the perpendicular lines from the vertices to the opposite sides.	A translation moves a point a given distance and direction by: A given rule Find the image of the point (3,1) through the translation $(2, -1) \rightarrow (4,1)$ $(3,1) \rightarrow (5,3)$ under the above translation (<i>x</i> number up 2, <i>y</i> number up 2) Symmetry An example would be to find image of the point (3,1) through central symmetry through (1,2) $(3,1) \rightarrow (1,2) \rightarrow (-1,3)$