#### **Trigonometric identities**

### **Key Words**

identity unit circle sine rule cosine rule compound angle surd form double angle half-angle formulae product formulae  $\sin^{-1} x$  (arc sine x)

We are already familiar with the three basic trigonometric ratios, namely sine, cosine and tangent.

Three related ratios are defined as:

$$\csc A = \frac{1}{\sin A}$$
  $\sec A = \frac{1}{\cos A}$   $\cot A = \frac{1}{\tan A}$ 

In the given triangle

$$\frac{\sin \theta}{\cos \theta} = \frac{y}{r} \div \frac{x}{r} = \frac{y}{r} \times \frac{r}{x} = \frac{y}{x} = \tan \theta$$

$$\Rightarrow \tan \theta = \frac{\sin \theta}{\cos \theta}$$



This relationship between trigonometric ratios is called an **identity** because it is true for **all values** of  $\theta$ .

We have already established that any point on the **unit circle** is defined by the coordinates  $(\cos \theta, \sin \theta)$ .

In the given diagram |OP| = 1

$$\Rightarrow |OP|^2 = 1$$

$$\Rightarrow \sqrt{(\cos \theta - 0)^2 + (\sin \theta - 0)^2} = 1$$

$$\Rightarrow \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$$

$$\Rightarrow$$
  $\cos^2 \theta + \sin^2 \theta = 1 \dots \text{ (squaring both sides) } *$ 



If each term in the equation  $\sin^2 \theta + \cos^2 \theta = 1$  is divided by  $\cos^2 \theta$ , we get,

$$\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$

$$\Rightarrow$$
  $\tan^2 \theta + 1 = \sec^2 \theta$ 

$$\Rightarrow$$
 1 + tan<sup>2</sup>  $\theta$  = sec<sup>2</sup>  $\theta$ 

The identities established above should be memorised as they are used very frequently to prove more complex identities. These identities are highlighted in the box below.

1. 
$$\csc \theta = \frac{1}{\sin \theta}$$
 2.  $\sec \theta = \frac{1}{\cos \theta}$  3.  $\tan \theta = \frac{\sin \theta}{\cos \theta}$  4.  $\cot \theta = \frac{\cos \theta}{\sin \theta}$  5.  $\sin^2 \theta + \cos^2 \theta = 1$  6.  $1 + \tan^2 \theta = \sec^2 \theta$ 

2. 
$$\sec \theta = \frac{1}{\cos \theta}$$

3. 
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

**4.** 
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$5. \sin^2 \theta + \cos^2 \theta = 1$$

$$6. 1 + \tan^2 \theta = \sec^2 \theta$$

It follows from 5 that  $\sin^2 \theta = 1 - \cos^2 \theta$  and  $\cos^2 \theta = 1 - \sin^2 \theta$ .

The general method of proving an identity is to choose the left-hand side and show, by using known identities, that it can be simplified into the form of the right-hand side.

This is illustrated in the following examples.

# Example 1

Prove these identities:

(i) 
$$\sec A - \tan A \sin A = \cos A$$

LHS

(ii) 
$$\tan \theta \sqrt{1 - \sin^2 \theta} = \sin \theta$$
.

$$Sin^2A + cos^2A = 1$$
  
 $\Rightarrow cos^2A = 1 - Sin^2A$ 





### Example 2

Prove that 
$$\frac{\tan \theta + \sin \theta}{\sec \theta + 1} = \sin \theta$$
.

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$



## Identities involving the Sine Rule and Cosine Rule

The Sine Rule states that  $\frac{a}{\sin A} = \frac{b}{\sin B}$ 

This can be also written as  $\sin A = \frac{a \sin B}{b}$ 

The Cosine Rule states that  $a^2 = b^2 + c^2 - 2bc \cos A$ .

This can also be written as  $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ .

Identities involving the sides a, b and c of a triangle generally require the use of the *Sine* or *Cosine Rules* to prove them.

Example 3

Prove that in any triangle,  $c \cos B - b \cos C = \frac{c^2 - b^2}{a}$ 

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$\cos A = \frac{a^{2} - b^{2} - c^{2}}{-2bc}$$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

